Due: Thursday, January 30th, 2014

Problem to be turned in: 1

1. Suppose that X and Y are random variables with joint probability density

$$
f(x, y)= \begin{cases}\frac{4}{5}(x y+1) & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the marginal densities $f_{1}(x)$ and $f_{2}(y)$.
(b) Are X and Y independent?
(c) Calculate the means μ_{X}, μ_{Y}, the variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and the covariance $\sigma_{X Y}$.
(d) Calculate $E\left(X^{2}+Y^{2}\right)$.
2. Suppose Y_{1} and Y_{2} have a joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{2} & \text { if } 0 \leq y_{2} \leq y_{1} \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the marginal probability density functions for Y_{1} and Y_{2}.
(b) Compute $P\left(Y_{1} \leq 1, Y_{2} \leq \frac{1}{2}\right)$.
3. Let $D=\left\{(x, y): x^{2} \leq y \leq x\right\}$. A point (X, Y) is chosen uniformly from D. Find the joint probability density function of X and Y.
4. Let k be a positive number. Consider the joint p.d.f of X_{1} and X_{2} to be given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}k & \text { if } 0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 1 \text { and } 2 x_{2} \leq x_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Let $U=X_{1}-X_{2}$.
(a) Find the probability density function for U.
(b) Find $E(U)$.
5. Suppandi and Meera plan to meet at Gopalan Arcade between 7pm and 8pm. They decide to reach at a time (independent of each other) uniformly between 7 pm and 8 pm and wait for 15 minutes for the other person. Find the probability that they will meet?

