Due: Wednesday Nov 9th, 2016

- 1. Let $X \sim \text{Normal}(0,1)$. Use the moment generating function of X to calculate $E[X^4]$.
- 2. Let $Y \sim \text{Exponential}(\lambda)$.
 - (a) Calculate the moment generating function $M_Y(t)$.
 - (b) Use (a) to calculate $E[Y^3]$ and $E[Y^4]$, the third and fourth moments of an exponential distriubtion.
- 3. Let X_1, X_2, \ldots, X_n be i.i.d. random variables.
 - (a) Let $Y = X_1 + \cdots + X_n$. Prove that $M_Y(t) = [M_{X_1}(t)]^n$.
 - (b) Let $Z = (X_1 + \dots + X_n)/n$. Prove that $M_Z(t) = [M_{X_1}(\frac{t}{n})]^n$.
- 4. Suppose X is a discrete random variable and $D = \{t \in \mathbb{R} : E[t^X] \text{ exists}\}$. The function $\psi : D \to \mathbb{R}$ given by

$$\psi(t) = E[t^X],$$

is called the probability generating function for X. Calculate the probability generating function of X when X is

- (a) $X \sim \text{Bernoulli}(p)$, with 0 .
- (b) $X \sim \text{Binomial}(n, p)$, with 0 .
- (c) $X \sim \text{Geometric}(p)$, with 0 .
- (d) $X \sim \text{Poisson } (\lambda)$, with $0 < \lambda$.
- 5. Let X, X_1, X_2, \dots, X_n be i.i.d random variables that are uniformly distributed over the interval (0,1). Consider the first order statistic $X_{(1)} = \max\{X_1, \dots, X_n\}$. Show that $X_{(1)}$ converges to 0 in probability.
- 6. Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. random variables with finite mean and variance. Define

$$Y_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i.$$

Show that $Y_n \stackrel{p}{\to} E(X_1)$ as $n \to \infty$.