Due: Thursday, March 17th 2016

Problem to be turned in:

- 1. Suppose that $X_n \sim \text{Cauchy}(1)$ for each $n \in \mathbb{N}$ and are mutually independent. Find the distribution of $\overline{X_n}$.
- 2. Suppose that $X_n \sim \text{Uniform } \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ for each $n \in \mathbb{N}$. Show that X_n converges in distribution to X as $n \to \infty$ with $X \sim \text{Uniform } (0, 1)$.
- 3. Suppose X_n converges to X in probability, that is for any $\epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0.$$

then show that X_n converges in distribution to X.

- 4. Let $X \sim \text{Bernoulli}(\frac{1}{2})$. Let $X_n = 1 X$ for all $n \ge 1$. Show that X_n converges in distribution to X but X_n does not converge in probability to X.
- 5. (Matching problem) Consider a sample, X_1, X_2, \ldots, X_n of size n, drawn from the set $\{1, 2, 3, \ldots, n\}$ without replacement. We will say that a match occurs at i, if $X_i = i$. Let N_n be the total number of matchesthat occur in such a sample.
 - (a) Find the distribution of N_n .
 - (b) Does N_n converge in distribution to a random variable ?
- 6. For $i \ge 1$, let $X_i \sim \text{Exponential}$ (1). Let $Y_n = X_{(n)} \ln(n)$. Show that Y_n converges in distribution to a random variable X and find the distribution of X.
- 7. For $i \ge 1$, let $X_i \sim \text{Pareto}(i)$. Let $Y_n = nX_n n$. Show that Y_n converges in distribution to a random variable X and find the distribution of X.