Due: Thursday, March 31st 2016

Problem to be turned in: 7

- 1. Let $X \sim \text{Cauchy } (0,1)$. Find the distribution of $Y = \frac{1}{X}$.
- 2. Let X_1, X_2, \ldots, X_n be i.i.d Uniform (0, 1) random variables. Find the density of $Y = \prod_{i=1}^n X_i$.
- 3. Let X_1, X_2 be i.i.d. Uniform (0,1) random variables. Let $Y_1 = \cos(2\pi X_2)\sqrt{-2\log(X_1)}$ and $Y_2 = \sin(2\pi X_2)\sqrt{-2\log(X_1)}$. Find the joint density of Y_1, Y_2 .
- 4. Let X_1, X_2 be independent Exponential (λ) random variables. Find the probability density function of $Y = \frac{X_1 X_2}{(X_1 + X_2)^2}$.
- 5. Let (X_1, X_2) be a bivariate Normal random variable. Define

$$\Sigma = \begin{bmatrix} Cov[X_1, X_1] & Cov[X_1, X_2] \\ Cov[X_1, X_2] & Cov[X_2, X_2] \end{bmatrix}$$

and $\mu_1 = E[X_1], \mu_2 = E[X_2], \mu_{2 \times 1} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}.$

 Σ is referred to as the covariance matrix of (X_1, X_2) and μ is the mean matrix of (X_1, X_2) .

- (a) Compute $det(\Sigma)$.
- (b) Show that the joint density of (X_1, X_2) can be rewritten in matrix notation as

$$g(x_1, x_2) = \frac{1}{2\pi \det(\Sigma)} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 & x_2 - \mu_2 \end{bmatrix} \Sigma^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

(c) Suppose

$$A_{2\times 2} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right], \eta_{2\times 1} = \left[\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right]$$

such that a_{ij} are real numbers. Suppose we define

$$Y = AX = \begin{bmatrix} a_{11}X_1 + a_{12}X_2 + \eta_1 \\ a_{21}X_1 + a_{22}X_2 + \eta_2 \end{bmatrix}$$

Show that (Y_1, Y_2) is also a bivariate Normal random variable, with covariance matrix $A\Sigma A^T$ and mean matrix $A\mu + \eta$.

6. Let $X_1, X_2, \ldots X_n$ be i.i.d. standard normal random variables. Let \overline{X} denote the sample mean and S^2 denote the sample variance.

(a) Show that

$$S^{2} = \frac{1}{n-1} \left(\left(\sum_{i=2}^{n} X_{i} - \overline{X} \right)^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} \right).$$

- (b) Let $Y_1 = \overline{X}$, $Y_i = X_i \overline{X}$ for i = 2, 3, ..., n. Find the joint density of $(Y_1, Y_2, ..., Y_n)$.
- (c) Show that S^2 and \overline{X} are independent.