Due: Thursday, October 1st, 2015

Problem to be turned in: 3, 5

1. Let X and Y be discrete random variables. Let x be in the range of X and let y be in the range of Y.
(a) Suppose X and Y are independent. Show that $E[X \mid Y=y]=E[X]$ (and so $E[X \mid Y]=E[X]$).
(b) Show that $E[X \mid X=x]=x$ (and so $E[X \mid X]=X$).
(c) When X and Y are independent, show that $E[X \mid Y]$ is a constant random variable $E[X]$.
2. Consdier the experiment of flipping two coins. Let X be the number of heads among the coins and let Y be the number of tails among the coins.
(a) Should you expect X and Y to be posivitely correlated, negatively correlated, or uncorrelated? Why?
(b) Calculate $\operatorname{Cov}[X, Y]$ to confirm your answer to (a).
3. Let $X \sim \operatorname{Uniform}(\{0,1,2\})$ and let Y be the number of heads in X flips of a coin.
(a) Should you expect X and Y to be positively correlated, negatively correlated, or uncorrelated? Why?
(b) Calculate $\operatorname{Cov}[X, Y]$ to confirm your answer to (a).
4. Prove that the inequality Theorem 4.5.7. is an equality if and only if there are $a, b \in \mathbb{R}$ with $a \neq 0$ for which $P(Y=a X+b)=1$. (Put another way, the correlation of X and Y is ± 1 exactly when Y can be expressed as a non-trivial linear function of X).
5. In class it was shown that if X and Y are independent, then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$. If X and Y are dependent, the result is typically not true, but the covariance provides a way relate the variances of X and Y to the variance of their sum.
(a) Show that for any discrete random variables X and Y,

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y] .
$$

(b) Use (a) to conclude that when X and Y are positively correlated, then $\operatorname{Var}[X+Y]>\operatorname{Var}[X]+$ $\operatorname{Var}[Y]$, while when X and Y are negatively correlated, $\operatorname{Var}[X+Y]<\operatorname{Var}[X]+\operatorname{Var}[Y]$.

