Problem to be turned in: 6,7

1. Consider the experiment of flipping a coin four times and recording the sequence of heads and tails. Let S be the sample space of all sixteen possible orderings of the results. Let X be the function on S describing the number of tails among the flips. Let Y be the function on S describing the first flip (if any) to come up tails.
(a) Create a table as in Example 3.2.8 discussed in class, describing functions X and Y.
(b) Use the table to calculate $P(X=2)$.
(c) Use the table to calculate $P(Y=3)$.
2. A pair of fair dice are thrown. Let X represent the larger of the two values on the dice and let Y represent the smaller of the two values.
(a) Describe S, the domain of functions X and Y. How many elements are in S ?
(b) What are the ranges of X and Y. Do X and Y have the same range? Why or why not?
(c) Describe the distribution of X and describe the distribution of Y by finding the probability mass function of each. Is it true that $X \sim Y$?
3. A pair of fair dice are thrown. Let X represent the number of the first die and let Y represent the number of the second die.
(a) Describe S, the domain of functions X and Y. How many elements are in S ?
(b) Describe T, the range of functions X and Y. How many elements are in T ?
(c) Describe the distribution of X and describe the distribution of Y by finding the probability mass function of each. Is it true that $X \sim Y$?
(d) Are X and Y the same function? Why or why not?
4. Use the \sim notation to classify the distributions of the random variables described by the scenarios below. For instance, if a scenario said, "let X be the number of heads in three flips of a coin" the approrpriate answer would be $X \sim \operatorname{Binomial}\left(3, \frac{1}{2}\right)$ since that describes the number of successes in three Bernoulli trials.
(a) Let X be the number of 5's seen in four die rolls. What is the distribution of X ?
(b) Each ticket in a certain lottery has a 20% chance to be a prize-winning ticket. Let Y be the number of tickets that need to be purchased before seeing the first prize-winner. What is the distribution of Y ?
(c) A class of ten students is comprised of seven women and three men. Four students are randomly selected from the class. Let Z denote the number of men among the four randomly selected students. What is the distribution of Z ?
5. An urn has four balls labeled $1,2,3$, and 4. A first ball is drawn and its number is denoted by X. A second ball is then drawn from the three remaining balls in the urn and its number is denoted by Y.
(a) Calculate $P(X=1)$.
(b) Calculate $P(Y=2 \mid X=1)$.
(c) Calculate $P(Y=2)$.
(d) Calculate $P(X=1, Y=2)$.
(e) Are X and Y independent? Why or why not?
6. Two dice are rolled. Let X denote the sum of the dice and let Y denote the value of the first die.
(a) Calculate $P(X=7)$ and $P(Y=4)$.
(b) Calculate $P(X=7, Y=4)$.
(c) Calculate $P(X=5)$ and $P(Y=4)$.
(d) Calculate $P(X=5, Y=4)$.
(e) Are X and Y independent? Why or why not?
7. Let X and Y be random variables with joint distribution given by the chart below.

	$X=0$	$X=1$	$X=2$
$Y=0$	$1 / 12$	0	$3 / 12$
$Y=1$	$2 / 12$	$1 / 12$	0
$Y=2$	$3 / 12$	$1 / 12$	$1 / 12$

(a) Compute the marginal distributions of X and Y.
(b) Compute the conditional distribution of X given that $Y=2$.
(c) Compute the conditional distribution of Y given that $X=2$.
(d) Carry out a computation to show that X and Y are not independent.

Probability 1

Quiz 4 Solution

Semester I 2015/16

1. A fair die is rolled repeatedly.
(a) What is the probability that the first 6 appears on the fifth roll?
(b) What is the probability that no 6 's appear in the first four rolls?
(c) What is the probability that the second 6 appears on the fifth roll?

Solution: We think of each roll as an independent trial. Each trial is a success if 6 appears and failure otherwise.
(a) Probability that the first 6 appears on the fifth roll is the same as the value a Geometric $\left(\frac{1}{6}\right)$ puts on 5, which is

$$
\left(\frac{5}{6}\right)^{4} \frac{1}{6}
$$

(b) Probability that the no 6 appears in the first four rolls is the same

$$
\left(\frac{5}{6}\right)^{4}
$$

(c) Probability that the second 6 appears in the fifth roll rolls is the same as

$$
\begin{aligned}
& P\left(\begin{array}{l}
\text { Exactly one six appears in first four rolls } \cap \text { A six appears in the fifth roll }) \\
\\
\quad \text { by independence of each roll } \\
=P(\text { Exactly one six in first four rolls }) P(\text { Six appears in the fifth roll }) \\
=\binom{4}{1} \frac{1}{6}\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)
\end{array}\right.
\end{aligned}
$$

where exactly one six in first four rolls is the same as the value a Binomial $\left(4, \frac{1}{6}\right)$ puts on for 1 .

