Due: Thursday, October 27th, 2015

Problem to be turned in: 3,6

1. Let X be a random variable with density $f(x)=2 x$ for $0<x<1$ (and $f(x)=0$ otherwise).
(a) Calculate $E[X]$. You should get a result larger than $\frac{1}{2}$. Explain why this should be expected even without computations.
(b) Calculate $S D[X]$.
2. Let $X \sim \operatorname{Uniform}(0,10)$ and let $g(x)=\max \{x, 4\}$. Calculate $E[g(X)]$.
3. Let $X \sim \operatorname{Unifrom}(a, b)$. Let μ and σ be the expected value and standard deviation of X.
(a) Calculate $P(|X-\mu| \leq k \sigma)$. Your final answer should depend on k, but not on the values of a or b.
(b) What is the value of k such that results of more than k standard deviations from expected value are unachievable for X ?
(c) Repeat (a) and (b) when $X \sim \operatorname{Exponential}(\lambda)$
4. Let $r \geq 1$. Suppose we have a coin with probability of heads being p. We toss the coin till we obtain r heads. Let X be the trial at which the r-th head occurs. Find the probability and moment generating functions of X.
5. Let $X \sim$ Normal $(0,1)$. Use the moment generating function of X to calcluate $E\left[X^{4}\right]$.
6. Let $Y \sim$ Exponential (λ).
(a) Calculate the moment generating function $M_{Y}(t)$.
(b) Use (a) to calculate $E\left[Y^{3}\right]$ and $E\left[Y^{4}\right]$, the third and fourth moments of an exponential distriubtion.
