Due: Thursday, October 15th, 2015
Problem to be turned in: 1, 2(e), (f)

1. Let X be a random variable with density $f(x)=3 x^{2}$ for $0<x<1$ (and $f(x)=0$ otherwise). Calculate the distribution function of X.
2. Let $X \sim \operatorname{Uniform}(0,1)$.
(a) Let $Y=\sqrt{X}$. Determine the density of Y.
(b) Let $Z=\frac{1}{X}$. Determine the density of Z.
(c) Let $r>0$ and define $Y=r X$. Show that Y is uniformly distributed on $(0, r)$.
(d) Let $Y=1-X$. Show that $Y \sim \operatorname{Uniform}(0,1)$ as well.
(e) Let a and b be real numbers with $a<b$ and let $Y=(b-a) X+a$. Show that $Y \sim \operatorname{Uniform}(a, b)$.
(f) Find a function $g(x)$ (which is strictly increasing) such that the random variable $Y=g(X)$ has density $f_{Y}(y)=3 y^{2}$ for $0<y<1$ (and $f_{Y}(y)=0$ otherwise).
3. Let $X \sim \operatorname{Uniform}(\{1,2,3,4,5,6\})$. Find the distribution function $F_{X}(x)$.
4. If $X \sim \operatorname{Normal}(0,1)$. Let $Y=X^{2}$. Find the density function of Y
