Due: Thursday, October 8th, 2015
Problem to be turned in: 2, 4(a)

1. Let $f(x)$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
2 x & \text { if } 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that $f(x)$ is a probability density function.
(b) Let P be the probability whose density is f. Calculate $P\left(\left(0, \frac{1}{2}\right)\right)$.
2. Let $f(x)$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
C \cdot \sin (x) & \text { if } 0<x<\pi \\
0 & \text { otherwise }
\end{array}\right.
$$

where C is a yet-to-be-determined constant.
(a) Determine the value of C that makes $f(x)$ a probability density function.
(b) Let P be the probability whose density if f. Calculate $P\left(\left(0, \frac{1}{2}\right)\right)$ and $P\left(\left(\frac{1}{2}, 1\right)\right)$.
(c) Which will be larger, $P\left(\left(0, \frac{1}{4}\right)\right)$ or $P\left(\left(\frac{1}{4}, \frac{1}{2}\right)\right)$? Explain how you can answer this question without actually calculating either probability.
(d) A game is played in the following way. A random variable X is selected with a density described by $f(x)$ above. You must select a number r and you win the game if the random variable results in an outcome in the interval ($r-0.01, r+0.01$). Explain how you should choose r to maximize your chance of winning the game. (Very little computation should be required to answer this).
3. Let $X \sim \operatorname{Exp}(\lambda)$. The " 90 th percentile" is a value a such that X is larger than $a 90 \%$ of the time. Find the 90 th percentile of X by determining the value of a for which $P(X<a)=0.9$.
4. The "median" of a continuous random variable X is the value of x for which $P(X>x)=P(X<$ $x)=\frac{1}{2}$.
(a) If $X \sim \operatorname{Uniform}(a, b)$ calculate the median of X.
(b) If $Y \sim \operatorname{Exp}(\lambda)$ calcluate the median of Y.
(c) Let $Z \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Show that the median of Z is μ.
5. Let $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Show that $P(|X-\mu|<k \sigma)$ does not depend on the values of μ or σ.

