Not Due

1. Let X_{n} be a simple random walk, i.e. $X_{n}=\sum_{i=1}^{n} \xi_{i}$ where ξ_{i} are i.i.d. taking values 1 and -1 with probability $\frac{1}{2}$. Now suppose, for $x \in \mathbb{Z}$ let

$$
V(x)=\sum_{k=1}^{\infty} 1\left(X_{n}=x\right), h^{(m)}(x)=P(V(x) \geq m), m \geq 1 .
$$

(a) Show that $P\left(\cap_{n=m+k}^{\infty} X_{n} \neq y\right) \geq P\left(X_{k}=x\right) P\left(\cap_{n=m}^{\infty} X_{n} \neq y\right)$.
(b) Conclude from above that $h(x)>0, h^{\infty}(y)=1$ implies that $h^{\infty}(y-x)=1$.
(c) Further show that $h(x)>0, h(0)=1$ implies that $h^{\infty}(x)=1$

The above exercise along with the work done in class, where we showed that $h(0)=1, h^{\infty}(0)=1$, implies that the simple random walk visits every site infinitely often. The simple random walk is called recurrent.
2. Consider a simple random walk in \mathbb{Z}^{d} with $d \geq 2$, i.e at each time step the walk jumps to one of its neighbours with probability $\frac{1}{2 d}$. Show that the walk in 2 dimensions is recurrent but in 3 dimensions is not. Hint: define $g(x)=\sum_{k=1}^{\infty} P\left(X_{k}=x\right)$ and decided whether it is finite or not. Then use the equivalences between h and g discussed in class.

