Due: Thursday, April 22, 2010

- 1. Suppose (X, Y) is a point chosen uniformly on the triangle $\{(x, y) : x \ge 0, y \ge 0, x + y = 4\}$. Find the conditional probability P(Y > 1 | X = x).
- 2. Let $X, X_n, n \in \mathbb{N}$, be integrable random variables on a probability space, (Ω, \mathcal{B}, P) and \mathcal{C} be a sub- σ algebra of \mathcal{B} .
 - (a) Suppose $X_n, X \ge 0$ and $X_n \uparrow X$ on Ω . Then show that

$$E(X_n \mid \mathcal{C}) \uparrow E(X \mid \mathcal{C}).$$

(b) Suppose $X_n \to X$ such that there exists a integrable Y on C such that $| E(X_n | C) | \leq Y \forall n$; then

$$E(X_n \mid \mathcal{C}) \to E(X \mid \mathcal{C}).$$

3. Consider a sequence of random variables $\{X_n, n \ge 1\}$ on a probability space (Ω, \mathcal{F}, P) . An event $A \in \mathcal{B}$ is said to be *invariant* if $\exists B \in \mathcal{B}^{\mathbb{N}}$ such that for every $n \ge 1$

$$A = \{ (X_n, X_{n+1}, \dots,) \in B \}$$

and let $\mathcal{I} = \{A \in \mathcal{B} : A \text{ is invariant }\}$. Show that \mathcal{I} a σ -algebra. It is referred to as the invariant σ -algebra

4. Consider a sequence of random variables $\{X_n, n \ge 1\}$ on a probability space (Ω, \mathcal{F}, P) . Then show that

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots)$$

is a σ -algebra. It is referred to as the tail σ -algebra associated with the sequence $\{X_n\}$. Further show that $\mathcal{T} \subset \mathcal{I}$

- 5. Consider a sequence of independent random variables $\{X_n, n \ge 1\}$ on a probability space (Ω, \mathcal{F}, P) . An event A is a tail event if it is in the tail σ -algebra. Show that $P(A) \in \{0, 1\}$.
- 6. Let P be a probability measure defined on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Then, for all $E \in \mathcal{B}_{\mathbb{R}}$ and for all $\varepsilon > 0$, there exists an open set U and a compact set K such that $K \subseteq E \subseteq U$ and $P(U) \varepsilon < P(E) < P(K) + \varepsilon$.
- 7. Let f be a non-negative measurable function defined on a Probability space $(\Omega, \mathcal{B}, \mathbb{P})$. Define

$$\mu_f : \mathcal{B} \to [0, \infty]$$
 by $\mu_f(E) = \int_E f d\mathbb{P}.$

show that: (i) μ_f is a measure defined on B.

(ii) μ_f is σ -finite if and only f is finite almost everywhere.

(iii)
$$E \in \mathcal{B}, \mathbb{P}(E) = 0 \rightarrow \mu_f(E) = 0.$$

- 8. Prove that if $f \in L^1(\Omega, \mathcal{B}, \mathbb{P})$ the following are equivalent:
 - (a) $\int_E f d\mathbb{P} = 0$ for all $E \in \mathcal{B}$.
 - (b) $f = 0 \mathbb{P} a.e.$