Problems to be turned in : Due: Tuesday, April 1, 2010

1. (Slutsky's theorem) Let $\left\{X_{n}, X, Y_{n}: n \in \mathbb{N}\right\}$ be random variables on a probability space (Ω, \mathcal{B}, P). Let $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} c$ where $c \in \mathbb{R}$ (i.e. $Y_{n} \xrightarrow{p} Y$ with $Y=c$ a.e.). Then
(a) $X_{n} Y_{n} \xrightarrow{d} c X$
(b) $\frac{X_{n}}{Y_{n}} \xrightarrow{d} \frac{X}{c}$ if $c \neq 0$
2. Let $X_{n} \xrightarrow{d} X$ then show that $X_{n}^{2} \xrightarrow{d} X^{2}$.
3. Let $Y \stackrel{d}{=} N(0,1)$. Let $X_{n}=(-1)^{n} Y$. Discuss convergence a.e, in probability, and in distribution of X_{n}.
4. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be independent random variables, each uniformly distributed over the interval $(0, \theta)$. Show that $\max \left\{Y_{1}, \cdots, Y_{n}\right\}$ converges in probability toward θ as $n \rightarrow \infty$.
5. Let $X_{n} \xrightarrow{d} X$ and let F denote the distribution function of X. Let a be continuity point of F. Show that $P\left(X_{n}=a\right) \rightarrow 0$.
6. Let $\left\{X_{n}: n \geq 1\right\}$ be a sequence of random variables that is monotonically increasing, i.e. $X_{n+1}(\omega) \leq$ $X_{n}(\omega)$ for all $\omega \in \Omega, n \in \mathbb{N}$. If $X_{n} \xrightarrow{p} X$ then show that $X_{n} \xrightarrow{\text { a.e. }} X$.
7. Let Y_{n} be a sequence of independent and identically distributed (henceforth abbreviated to i.i.d.) random variables and let $X_{n}=\frac{Y_{n}}{n}$. Show that X_{n} converges in probability. Decide whether X_{n} converges a.e. or not.(Hint: use Borel-Cantelli lemma.)
8. Let X_{n} be a sequence of independent random variables on (Ω, \mathcal{B}, P), such that $X_{n} \stackrel{d}{=}$ Exponential $\left(a_{n}\right)$ with $a_{n}=\ln (n+1)$. Show that the sequence converges to zero in probability. Does the sequence converge to zero almost everywhere ? (Hint: use Borel-Cantelli lemma.)
9. Let $\mathcal{F}=\{F: \mathbb{R} \rightarrow[0,1]: F$ is a distribution function. $\}$ Define the function $d: \mathcal{F} \times \mathcal{F} \rightarrow[0, \infty)$ by

$$
d(F, G)=\inf \{\epsilon>0: G(x-\epsilon)-\epsilon \leq F(x) \leq G(x+\epsilon)+\epsilon\}
$$

Show that (\mathcal{F}, d) is a metric space. Further show that a sequence of random variables $\left\{X_{n}\right\}$ converges in distribution to X if and only if $\rho\left(F_{X_{n}}, F_{X}\right) \rightarrow 0$.
10. Let \mathcal{X} be the set of all random variables on the probability space (Ω, \mathcal{B}, P). Define a function $\rho: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ by

$$
\rho(X, Y)=E(\min (|X-Y|, 1)
$$

for any $X, Y \in \mathcal{X}$. Show that (\mathcal{X}, ρ) is a metric space. Further show that a sequence of random variables $\left\{X_{n}\right\}$ converges in probability to X if and only if $\rho\left(X_{n}, X\right) \rightarrow 0$.

