Due: Tuesday, March 23rd, 2010

1. Let μ_{1} and μ_{2} be two probability measures on (Ω, \mathcal{B}) and

$$
\mathcal{C}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^{2}}, a, \sigma \in \mathbb{R}\right\}
$$

Suppose

$$
\begin{equation*}
\int f d \mu_{1}=\int f d \mu_{2}, \forall f \in \mathcal{C} \tag{1}
\end{equation*}
$$

then $\mu_{1}=\mu_{2}$. Is this fact true if μ_{i} are σ-finite measures ?
2. Verify the formulae for the characteristic functions given below:-

Distribution	Characteristic Function $\phi(t), t \in \mathbb{R}$
Bernoulli (p)	$1-p+p e^{i t}$
Binomial (n, p)	$\left(1-p+p e^{i t}\right)^{n}$
Uniform $(\{1,2, \ldots, n\})$	$\frac{e^{i t}\left(1-e^{i t}\right)}{n\left(1-e^{i n t}\right)}$
Poisson (λ)	$e^{\lambda}\left(e^{i u-1}\right)$
Uniform (a, b)	$\frac{e^{i b t}-e^{i a t}}{i(b-a) t}$
Normal $\left(m, \sigma^{2}\right)$	$e^{-i m t-t^{2} \frac{\sigma^{2}}{2}}$

3. Let X be a real valued random variable on (Ω, \mathcal{F}, P) with characteristic function ϕ. Show that
(a) ϕ is a bounded continuous function with $\phi(0)=1$
(b) If $E\left(|X|^{m}\right)<\infty$ for some positive integer m, then show that ϕ is m-times differentiable.
4. Let $n \in \mathbb{N}$ and X be an \mathbb{R}^{n} valued random variable on (Ω, \mathcal{F}, P). Define its characteristic function to be

$$
\phi_{X}(a)=E\left(e^{i<X, a>}\right),
$$

where $a \in \mathbb{R}^{n}$ and $<X, a>(\omega)=\sum_{j=1}^{n} X_{j}(\omega) a_{j}$.
(a) Generalise Theorem on uniqueness to such random vectors.
(b) For any vector $\alpha \in \mathbb{R}^{n}$ and matrix $B \in M_{n \times n}(\mathbb{R})$ show that $\phi_{\alpha+B X}(a)=e^{i<\alpha, a>} \phi_{X}\left(B^{T} a\right)$, where B^{T} is the transpose of the matrix B. (Vectors are thought of as column vectors.)
(c) Suppose $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where each $\left\{X_{i}: 1 \leq i \leq n\right\}$ is a real valued random variable on (Ω, \mathcal{B}, P). Then show that $\left\{X_{i}: 1 \leq i \leq n\right\}$ are independent if and only if

$$
\phi_{X}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\prod_{i=1}^{n} \phi_{X_{i}}\left(a_{i}\right)
$$

where $a_{i} \in \mathbb{R}$, for $1 \leq i \leq n$.
5. Suppose $(\Omega, \mathcal{B}, \mu)$ is a σ-finite measure space and $f: \Omega \rightarrow \mathbb{R}$ is a non-negative $\left(\left(\mathcal{B}, \mathcal{B}_{\mathbb{R}}\right)-\right)$ measurable function. Define $\mathcal{G}=\{(w, t) \epsilon \Omega \times \mathbb{R}: 0 \leq t \leq f(w)\}$. Show that $\mathcal{G} \in \mathcal{B} \otimes \mathcal{B}_{\mathbb{R}}$, and that $(\mu \times m)(\mathcal{G})=$ $\int f d \mu$, where m denotes Lebesgue measure on \mathbb{R}.
6. Let $\alpha>0, t, a<b$ be real numbers and f be integrable on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, d x\right)$. Show that

$$
\int_{[a, b]} f(\alpha x+t) d x=\int_{\left[\frac{a-t}{\alpha}, \frac{b-t}{\alpha}\right]} f(x) \alpha d x
$$

7. Let $\Omega_{1}=\Omega_{2}=\mathbb{N}, \mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{P}(\mathbb{N})$. Define the measures μ_{i} on $\left(\Omega_{i}, \mathcal{B}_{i}\right)$ by $\mu_{i}(\{k\})=2^{-k}$. Define $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ by

$$
f(m, n)=\left\{\begin{aligned}
-n 2^{2 n} & \text { if } m=n \\
n 2^{2 n} & \text { if } m=n-1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

(a) Show that f is $\mathcal{B}_{1} \otimes \mathcal{B}_{2}$ measurable.
(b) Observe that

$$
\int_{\Omega_{2}} \int_{\Omega_{1}} f(m, n) d \mu_{1}(m) d \mu_{2}(n) \neq \int_{\Omega_{1}} \int_{\Omega_{2}} f(m, n) d \mu_{2}(n) d \mu_{1}(m)
$$

thereby emphasising the importance of integrability in the hypotheses of Fubini's theorem.
8. Let $I=[0,1]$. Let $I_{1}=I_{11}=\left(\frac{1}{3}, \frac{2}{3}\right)$ be the open middle third interval of I. Next, let $I_{21}=\left(\frac{1}{9}, \frac{2}{9}\right)$ and $I_{22}=\left(\frac{7}{9}, \frac{8}{9}\right)$ be the two open middle third intervals of $I-I_{1}$. Let $I_{2}=I_{21} \cup I_{22}$. For $j \geq 3$ and $k=1,2,3 \ldots, 2^{j-1}$, let $I_{j k}$ be the open middle third intervals of $I-\cup_{k=1}^{j-1} I_{k}$ and let $I_{j}=\cup_{k=1}^{2^{j-1}} I_{j k}$. Finally, let $C=I-\cup_{j=1}^{\infty} I_{j}$. C is called the Cantor set.
(a) Show that C is compact and uncountable.
(b) Show that $\lambda(C)=0$, where λ is lebesgue measure on $[0,1]$.
(c) Show that if $x \in C$ then $x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}}$ where $a_{j}=0$ or $a_{j}=2$ for all j.
(d) Define a function $f: C \rightarrow[0,1]$ as: $f(x)=\sum_{j=1}^{\infty} \frac{b_{j}}{2^{j}}$, where $x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}}$ and $b_{j}=\frac{a_{j}}{2}$.
9. Le C be as in previous problem.
(a) Show that f maps C onto $[0,1]$.
(b) If $x, y \in C, x<y$, and x, y are not the end points of one of the intervals removed from $[0,1]$ to obtain C, then $f(x)<f(y)$.
(c) If $x, y \in C, x<y$, and x, y are end points of one of the intervals removed from $[0,1]$ to obtain C, then show that $f(x)=f(y)=\frac{p}{2^{k}}$ for some $p, k \in \mathbb{N}$ and p not divisible by 3 . (Hint: If x is an end point of one of the intervals removed to obtain C, then $x=\frac{p}{3^{k}}$ for some $p, k \in \mathbb{N}$ and p not divisible by 3 . Use (1) and 2(a) to obtain the result.)
(d) Extend f to a map from $[0,1]$ onto itself by defining its value on each interval missing from C to be its value at the end points. Show that f is continuous but not absolutely continuous (Hint: $f^{\prime}=0$ a.e.).
10. Find the characteristic function of the Gamma distribution with parameters (n, λ).

