Due: Tuesday, February 11th, 2010

1. A line from 4 to 10 has midpoint 7. A point x is chosen at random on this line. Find the probability that the line segments $[4, x],[x, 10]$ and $[4,7]$ can be joined to form a triangle.
2. Of the people who enter a blood bank to donate blood, 1 in 3 have type O^{+}blood and 1 in 15 have type O^{-}blood. For the next three people entering the blood bank, let X denote the number with type O^{+}blood and Y the number with type O^{-}blood. Find the probability distributions for X, Y and $X+Y$.
3. The length of time X required to complete a certain task is an exponentially distributed random variable with mean 10 hours. The cost C of completing this task is

$$
C=100+40 X+3 X^{2}
$$

(a) Find the mean and variance of C.
(b) Find the probability that C exceeds $\$ 2000$.
4. Suppose that X has an exponential distribution with mean θ. We showed in class that, for all $s, t>0$,

$$
P(X>s+t \mid X>s)=P(X>t)
$$

This is called the "memoryless property" of the exponential distribution. Suppose that Y is another positive continuous memoryless random variable. Show that Y has exponential distribution with some mean $\theta>0$.
5. The joint probability density function of X and Y is given by

$$
f(x, y)=c\left(y^{2}-x^{2}\right) e^{-y} \quad-y \leq x \leq y, 0<y<\infty
$$

(a) Find c.
(b) Find the marginal densities of X and Y.
(c) Find $E(X)$.
(d) Find $P\left(X<\frac{1}{2} Y\right)$.
6. Thieves stole four animals at random from a farm that had seven sheep, eight goats and five burros. Calculate the joint probability function of the number of sheep and goats stolen.
7. A farmer makes cuts at two points selected at random on a piece of lumber of length ℓ. What is the expected value of the length of the middle piece?
8. Let R be the region between $y=x$ and $y=x^{2}$. A random point (X, Y) is selected from R. Find the joint probability density function of X and Y.
9. The joint distribution of amount of pollutant emitted from a smokestack without a cleaning device $\left(X_{1}\right)$ and with a cleaning device $\left(X_{2}\right)$ is given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}k & \text { if } 0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 1 \text { and } 2 x_{2} \leq x_{1} \\ 0 & \text { otherwise }\end{cases}
$$

The reduction in amount of pollutant emitted due to the cleaning device is given by $U=X_{1}-X_{2}$.
(a) Find the probability density function for U.
(b) Find $E(U)$.
10. Y_{1} and Y_{2} have a joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2} & \text { if } 0 \leq y_{2} \leq y_{1} \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Compute the marginal probability density functions for Y_{1} and Y_{2}.
(b) Compute $P\left(Y_{1} \leq 1, Y_{2} \leq \frac{1}{2}\right)$.

