Due: Tuesday, February 2nd, 2010

1. Let $b(n, p, j)$ denote the probability of getting j successes in a $\operatorname{Binomial}(n, p)$ experiment. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be given by:

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right),-\infty<x<\infty
$$

Show that

$$
\lim _{n \rightarrow \infty} \sqrt{n p q} b(n, p,[n p+x \sqrt{n p q}])=\phi(x) .
$$

2. Suppose we conduct an experiment having two outcomes ($\{S\}$ Success happens with probability p and $\{F\}$ Failure happens with probability $1-p$ for $0<p<1) n$ times. Let (Ω, \mathcal{F}, P) be the corresponding probability space. Define S_{n} to be the number of successes in n trials. Show that

$$
\lim _{n \rightarrow \infty} P\left(a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right)=\int_{a}^{b} \phi(x)
$$

3. Show that the, m, Mode of the $\operatorname{Binomial}(n, p)$ distribution is given by $m=[n p+p]$. Further clarify that (depending on n, p)
(a) if $n p$ happens to be an integer then $m=n p$.
(b) if $n p$ is not an integer then m is one of the two integers to either side of $n p$.
(c) m may not necessarily be closest integer to $n p$ and neither is m always the integer above $n p$ nor the integer below it.
4. . Let $z>0$. If $\Phi(z)=\int_{-\infty}^{z} \phi(x) d x$ then show that

$$
1-\Phi(z) \leq \frac{\phi(z)}{z}
$$

5. Let S_{25} be the number of successes in a Binomial $\left(25, \frac{1}{10}\right)$ experiment.
(a) Find m
(b) Find $P(S=m)$ correct upto 3 decimal places.
(c) What is the value of the Normal approximation to $P(S=m)$?
(d) What is the value of the Poisson approximation to $P(S=m)$?
(e) Repeat the above if 25 is replaced by 2500 . Compare the approximations given by Normal and Poisson. Repeat the same with2500 and $\frac{1}{10}$ replaced by $\frac{1}{1000}$.
6. Let X be the number of heads in three tosses of a fair coin.
(a) Display the distribution of X in a table.
(b) Find the distribution of $|X-1|$.
7. A box contain $2 n$ balls of n different colours, with 2 of each colour. Balls are picked at random from the box with replacement until two balls of the same colour have appeared. Let X be the number of draws made. Find the distribution of X. Hint: Find $P(X>k)$
8. Let W_{1} and W_{2} be independent geometric random variables with parameters p_{1} and p_{2}. Find:
(a) $P\left(W_{1}=W_{2}\right)$
(b) $P\left(W_{1}<W_{2}\right)$
(c) $P\left(W_{1}>W_{2}\right)$
(d) distribution of $\min \left(W_{1}, W_{2}\right)$.
9. In $n+m$ independent Bernoulli(p) trials, let S_{n} be the number of successes in the first n trials, T_{m} the number of successes in the last m trials.
(a) What is the distribution of S_{n} ?
(b) What is the distribution of T_{m} ?
(c) What is the distribution of $S_{m}+T_{n}$?
10. Suppose that the number of earthquakes X that occur in a year, anywhere in the world, is a Poisson random variable with mean ?. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is p. Let N be the number of earthquakes with magnitude at least 5 in a year. Find the distribution of N.
11. At the Universal Cricket Council, five day test matches are played on a best of 5 one day games basis, that is teams A and B play until one of them has won 3 one day games. Suppose each game is won by team A with probability p, independently of all other games.
(a) For each $g=3,4,5$ find a formula in terms of p that team A wins the UCC test match in exactly g games.
(b) Given that
i. player A won the UCC five day test match what is the probability in terms of p that the match lasted only three games ?
ii. B has won games 1 and 2 what is the probability in terms of p that team A wins the UCC five day test match.
iii. Let X be a $\operatorname{Binomial}(5, p)$ random variable. Is $P(A$ wins $)=P(X \geq 3)$? Explain your answer intuitively as well.
iv. Let G represent the number of games played. What is the distribution of G ? For what value of p is G independent of the winner of the series?
12. (a) If μ is a probability measure defined on the Borel σ algebra \mathcal{B} of \mathbb{R}, define $F: \mathbb{R} \rightarrow[0,1]$ by $F(x)=\mu((-\infty, x])$, and verify that
(a) F is monotonically non-decreasing - i.e. $x \leq y \longrightarrow F(x) \leq F(y)$ - and right continuous - i.e., $\lim _{y \downarrow x} F(y)=F(x) ;$
(b) F is discontinuous at x if and only if $\mu(\{x\}) \dot{ } 0$; and
(c) $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$. The function F is referred to as the distribution function of μ.
(d) Conversely, if $F: \mathbb{R} \rightarrow[0,1]$ is a function satisfying (i) and (iii) above, (imitate the construction of Lebesgue measure to) show that there exists a unique probability measure μ on \mathbb{R} such that $\mu((-\infty, x])=F(x)$ for all $x \in \mathbb{R}$.
(e) Generalise (a) and (b) above to the case of σ-finite (rather than just probability) measures.
13. Let (Ω, \mathcal{B}, P) be a probability space. Suppose
(a) X is discrete, with range $\left\{x_{i}: i \in \mathbb{N}\right\}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ then $E(g(X))=\sum_{i}^{\infty} g\left(x_{i}\right) P\left(X=x_{i}\right)$, provided $\sum_{i}^{\infty}\left|g\left(x_{i}\right)\right| P\left(X=x_{i}\right)$
(b) X is absolutely continuous with density f and $g: \mathbb{R} \rightarrow \mathbb{R}$ then $E(g(X))=\int g(x) f(x) d x$ provided $\int|g(x)| f(x) d x<\infty$
14. The moment generating function of a random variable X is defined to be the function

$$
M_{X}(t)=E\left(e^{t X}\right)=\sum_{n=0}^{\infty} \frac{E\left(X^{n}\right)}{n!} t^{n}
$$

Let $I=\left\{t \in \mathbb{R}: M_{X}(t)<\infty\right\}$. Show that
(a) I is a (possibly degenerate) interval and $0 \in I$.
(b) $M_{X}(\cdot)$ is a continuous convex function on I.
(c) if 0 is an interior point of I then $E\left(X^{k}\right)<\infty$ for all $k \in \mathbb{N}$ (i.e. X has finite moments of all orders)
15. Let X be a random variable on the probability space (Ω, \mathcal{B}, P) with distribution $P \circ X^{-1}$. Consider the random variable \tilde{X} on the probability space $\left(\mathbb{R}, \mathcal{B}_{R}, P \circ X\right)$ defined by $\tilde{X}(x)=x$. Then $P \circ \tilde{X}^{-1}=P \circ X^{-1}$.
16. Let $F: \mathbb{R} \rightarrow[0,1]$ be a distribution function of a probability measure P (i.e. $F(x)=P((-\infty, x]))$. Then show that there is a random variable $X:((0,1], \mathcal{B}, \lambda) \rightarrow \mathbb{R}$, (where B is the Borel σ-algebra and λ is Lebesgue measure), such that $P \circ X^{-1}=P$
17. Let $X: \Omega \rightarrow \mathbb{N}$ be a random variable on a probability space (Ω, \mathcal{B}, P). Show that

$$
E(X)=\sum_{n=1}^{\infty} P(X \geq n)
$$

18. Show that the following are equivalent: (a) A family \mathcal{A}_{i} of events is independent; (b) The family $\sigma\left(1_{\mathcal{A}_{i}}\right)$ of σ-algebras is independent.
19. Let X, Y be random variables on a probability space (Ω, \mathcal{B}, P). Show that X and Y are independent if and only if $\sigma(X)$ and $\sigma(Y)$ are independent.
