Due: Thursday, October 22nd, 2009

Problem to be turned in: 2,4

1. Let T_{m} count the number of heads of a biased (p) coin in m independent tosses. Let S_{n} count the number of head of a biased (p) coin in n independent tosses. Find the distribution, mean and variance of $S_{m}+T_{n}$.
2. Let $\left\{X_{n}\right\}_{n=1}^{3}$ be independent discrete random variables having variances $\left\{\sigma_{1}^{2}\right\}_{i=1}^{3}$. Find the correlation coefficient between $X_{1}-X_{2}$ and $X_{2}+X_{3}$.
3. Let X be a random variable with mean μ and variance σ^{2}. Find the mean and variance of the random variable $Z=\frac{X-\mu}{\sigma}$.
4. A random variable X has mean $\mu=1$ and standard deviation $\sigma=2$.
(a) Find $E(3 X+4)$ and Variance $(3 X+4)$.
(b) Estimate $P(-3<X<5)$ using Tchebysheff's theorem.
5. Let X be a discrete random variable with $E(X)=10$. What is the largest possible value of $P(X \geq 1000)$?
6. Let X be discrete random variable such that $\operatorname{Range}(X)=\{0,1, \ldots, n\}$ for some $n \geq 1$. Show that

$$
E(X)=\sum_{j=1}^{n} P(X \geq j)
$$

7. Suppose that seven dice are rolled. Let M be the minimum of the seven numbers. Find $E(M)$
8. Let X and Y be two discrete random variables. When are $X+Y$ and $X-Y$ are uncorrelated ?
