Due: Thursday, October 15th, 2009

Problem to be turned in: 3,5

1. Suppose we toss a biased (p) coin until we obtain the first head. Let X denote the trial at which the first head appears. Find the distribution and expectation of X.
2. Let X be a discrete random variable. Show that $E(X)<\infty$ if and only if $E(|X|)<\infty$
3. Suppose X is a random variable which has finite expectation. Show that for any $b \in \mathbb{R}$, that $E|X-b|<\infty$ and proceed to find b_{0} such that

$$
E\left|X-b_{0}\right|=\min _{b \in \mathbb{R}} E|X-b|
$$

4. Let $e_{n}=\left(1+\frac{1}{n}\right)^{n}$ for $n \in \mathbb{N}$. Show that
(a) $2 \leq e_{n}<3$ and $e_{n}<e_{n+1}$ for all $n \geq 1$. Consequently, let $e=\lim _{n \rightarrow \infty} e_{n}$.
(b) Let $s_{n}=\sum_{k=1}^{n} \frac{1}{k!}$. Show that $e_{n} \leq s_{n}$ and $s_{n} \leq \lim _{k \rightarrow \infty} e_{k}$. Conclude that limit of s_{n} exists and is e.
(c) For $x>0$, let $e_{n}(x)=\left(1+\frac{x}{n}\right)^{n}$ for $n \in \mathbb{N}$. Show that limit of e_{n}^{x} exists and is equal to e^{x}. Further, show that if $s_{n}(x)=\sum_{k=1}^{n} \frac{x^{k}}{k!}$ then limit of $s_{n}(x)$ exists and is also equal to e^{x}
5. Let f be the function defined on \mathbb{R} by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{x(x+1)} & x \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

Verify that f is a probability mass function of a random variable X. Decide whether $E(X)$ exists or not.
6. Suppose we have a population of d elements. Let $n \leq d$. We draw a sample with replacement until exactly n distinct elements have been obtained. Let X_{n} denote the size of the sample required. Find $E\left(X_{n}\right)$.

