Due: Thursday, September 3rd, 2009 Problem to be turned in: 1, 8 Due: Tuesday, October 6th, 2009 Problem to be turned in: 5,9

1. Let $i, j \in \mathbb{N}$. Show that the function $p(i, j)=\frac{1}{2^{2+j}}$ is a probability mass function. Now, consider X, Y be two random variables on a probabilty space (Ω, \mathcal{F}, P) with joint probability mass function given by $p(\cdot, \cdot)$. Compute $P(X+Y=4)$ and $P(X-Y=2)$.
2. Let X be the minimum and Y be the maximum of three digits picked at random wthout replacement from $\{0,1, \ldots, 9\}$. Find the joint distribution of X and Y.
3. Of the people who enter a blood bank to donate blood, 1 in 3 have type O^{+}blood and 1 in 15 have type O^{-}blood. For the next three people entering the blood bank, let X denote the number with type O^{+}blood and Y the number with type O^{-}blood. Find the probability distributions for X, Y and $X+Y$.
4. Suppose that the number of earthquakes that occur in a year, anywhere in the world, is a Poisson random variable with mean λ. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is p. Find the probability that there are n earthquakes with magnitude at least 5 in a year.
5. The joint probability mass function $p(x, y)$ of the random variables X and Y is given by the following table. Determine if X and Y are independent.

$$
\begin{array}{ccccc}
p(x, y) & y=0 & y=1 & y=2 & y=3 \\
x=0 & 0.1681 & 0.1804 & 0.0574 & 0.0041 \\
x=1 & 0.1804 & 0.1936 & 0.0616 & 0.0044 \\
x=2 & 0.0574 & 0.0616 & 0.0196 & 0.0014 \\
x=3 & 0.0041 & 0.0044 & 0.0014 & 0.0001
\end{array}
$$

6. Suppose Ω is a sample space consisting of sequences of two coin flips. Let X be a r.v. that is 1 if the first coin is heads, and 0 otherwise, Y be a r.v. that is 1 if the first coin is tails, and 0 otherwise, and Z be a r.v. that is 1 if the second coin is tails, and 0 otherwise. (a) Show that X, Y, and Z all have the same p.m.f. (b) Show that the pairs (X, Y) and (X, Z) have different joint p.m.f.s. (c) Are X and Y independent? Why or why not? (d) Are X and Z independent? Why or why not?
7. Consider a sample space Ω consisting of sequences of five coin flips. Let X be a random variable equal to the number of heads that come up from the five flips.
a) What is the range of X ?
b) What is the p.m.f. of X that turns this range into a probability space?
8. Suppose tickets numbered $\{1,2, \ldots, n\}$ are placed in a box and drawn one by one at random without replacement. Let X_{i} be the number of the i th ticket drawn, $1 \leq i \leq n$. (a) Find the joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right\}$. (b) Find the distribution X_{j} for $1 \leq j \leq n$.
9. Let X and Y be independent random variables each geometrically distributed with parameter p. (a) Find the distribution of $\min (X, Y)$. (b) Find $P(\min (X, Y)=X)$. (b) Find the distribution of $X+Y$. (c) Find the $P(X>m+n \mid X>n)$. (d) Find $P(Y=y \mid X+Y=z)$.
10. Extra credit: A box contains red and black balls. First, 10 balls are drawn with replacement and let X_{1} be the number of red balls. Next, 10 balls are drawn with replacement and let X_{2} be the number of red balls in this second sample. Are X_{1} and X_{2} independent?
