Due: April 22nd, 2009

Problems to be turned in : 2,5

1. Let X_{n} be a Markov chain on state space $S=\{1,2,3,4,5,6,7\}$ with transition matrix

$$
\mathbf{P}=\left(\begin{array}{ccccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

Determine the closed communicating classes and their periodicity.
2. (Random walk on a Circle) Let S be $\{0,1,2, \ldots, L\}$. Consider a particle, starting at a uniformly chosen point in S. At each time step, the particle goes to the right with probability p and left with probability $1-p$ with $0<p<1$. If it tries go left from 0 it jumps up to L and similarly if it tries to go right from L it jumps to 0 .
(a) Write down the transition probability matrix, when $L=6$.
(b) For general L, show that the chain is irreducible.
3. Let X_{n} be a Markov chain on S with transition matrix \mathbf{P}. and $m \geq 1$, show that

$$
P_{i}(N(j) \geq m)=P_{i}\left(T_{j}<\infty\right)\left(P_{j}\left(T_{j}<\infty\right)\right)^{m-1}
$$

4. Let X_{n} be an irreducible Markov chain on a state space S with transition matrix \mathbf{P}. Then show that

$$
\begin{aligned}
P_{i}\left(T_{i}<\infty\right)=1 & \Longleftrightarrow i \in S \text { is recurrent } \\
& \Longleftrightarrow P_{j}\left(T_{i}<\infty\right)=1 \forall j \in S .
\end{aligned}
$$

5. (Random walk on \mathbb{Z}) Let X_{n} be a Markov chain on $S=\mathbb{Z}$ with tranistion matrix \mathbf{P} given by

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

where $0<p<1$.
(a) Show that the chain is irreducible and every state has period 2.
(b) Show that for every $i \in \mathbb{Z} n \in \mathbb{N}$, $p_{i i}^{2 n}=\binom{2 n}{n} p^{n}(1-p)^{n}$.
(c) Decide whether the chain is recurrent or transient.
(d) What can you say if $p \in\{0,1\}$?
6. (Simple Symmetric Random walk on \mathbb{Z}^{d}) Let $S=\mathbb{Z}^{d}$, and call i a neigbhour of j in \mathbb{Z}^{d}, denoted by $i \sim j$, if the Euclidean distance from i to j is one. Let X_{n} be a Markov chain on S with transition matrix \mathbf{P} given by:

$$
p_{i j}= \begin{cases}\frac{1}{2 d} & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that the chain is irreducible and determine its periodicity.
(b) Decide whether the chain is recurrent or transient for the cases $d=2,3$.
(c) What can you say for $d \geq 4$?
7. Let X_{n} be a Markov chain on S with transition matrix \mathbf{P}.
(a) For $i, j \in S$ show that

$$
\begin{equation*}
p_{i j}^{n}=\sum_{k=1}^{n} f_{i j}^{k} p_{j j}^{n-k} \tag{0.1}
\end{equation*}
$$

s-ipf2
where $f_{i j}^{n}=P_{j}\left(T_{i}=n\right)$ for $i, j \in S$.
(b) If j is transient then show that $\sum_{n=1}^{\infty} p_{i j}^{n}<\infty$ for all $i \in S$.
(c) Suppose S is a finite set. Show that there is at least one recurrent state. (Hint: Assume that every state is transient, use the previous part to arrive at a contradiction)

