Due: March 11th, 2009

Problems to be turned in: 1,4

- 1. Suppose (X, Y) is a point chosen uniformly on the triangle $\{(x, y) : x \ge 0, y \ge 0, x + y = 4\}$. Find the conditional probability P(Y > 1 | X = x).
- 2. Let $X, X_n, n \in \mathbb{N}$, be integrable random variables on a probability space, (Ω, \mathcal{B}, P) and \mathcal{C} be a sub- σ algebra of \mathcal{B} .
 - (a) Suppose $X_n, X \ge 0$ and $X_n \uparrow X$ on Ω . Then show that

$$E(X_n \mid \mathcal{C}) \uparrow E(X \mid \mathcal{C})$$

(b) Suppose $X_n \to X$ such that there exists a integrable Y on C such that $|E(X_n | C)| \leq Y \forall n$; then

$$E(X_n \mid \mathcal{C}) \to E(X \mid \mathcal{C}).$$

- 3. Let X_i be i.i.d. Bernoulli(p) random variables. Define $S_n = \sum_{i=1}^n X_i$. For $1 \le m \le n$, find the conditional distribution of S_m given $S_n = k$. Have you seen this distribution before ? Compute $E(S_m | S_n = k)$ and $Var(S_m | S_n = k)$.
- 4. The number of eggs laid by a certain kind of insect follows a Poisson distribution. It is known that two such insects have laid their eggs in a particular area. If the total number of eggs in the area is 150, what is the chance that the first insect laid at least 90 eggs ?
- 5. Suppose X is distributed uniformly on (-1, 1) and given X = x, Y is distributed uniformly on $(-\sqrt{1-x^2}, \sqrt{1-x^2})$. What is the joint distribution of (X, Y)?
- 6. Let X be a real valued random variable on (Ω, \mathcal{F}, P) with characteristic function ϕ . Show that
 - (a) ϕ is a bounded continuous function with $\phi(0) = 1$
 - (b) If $E(|X|^m) < \infty$ for some positive integer m, then show that ϕ is m-times differentiable.
- 7. Let $n \in \mathbb{N}$ and X be an \mathbb{R}^n valued random variable on (Ω, \mathcal{F}, P) . Define its characteristic function to be

$$\phi_X(a) = E(e^{i < X, a >})$$

where $a \in \mathbb{R}^n$ and $\langle X, a \rangle(\omega) = \sum_{j=1}^n X_j(\omega)a_j$.

- (a) Generalise Theorem (on Uniqueness) to such random vectors.
- (b) For any vector $\alpha \in \mathbb{R}^n$ and matrix $B \in M_{n \times n}(\mathbb{R})$ show that $\phi_{\alpha+BX}(a) = e^{i \langle \alpha, a \rangle} \phi_X(B^T a)$, where B^T is the transpose of the matrix B. (Vectors are thought of as column vectors.)
- (c) Suppose $X = (X_1, X_2, ..., X_n)$ where each $\{X_i : 1 \le i \le n\}$ is a real valued random variable on (Ω, \mathcal{B}, P) . Then show that $\{X_i : 1 \le i \le n\}$ are independent if and only if

$$\phi_X(a_1, a_2, \dots, a_n) = \prod_{i=1}^n \phi_{X_i}(a_i),$$

where $a_i \in \mathbb{R}$, for $1 \leq i \leq n$.

- 8. Find the characteristic function of the Gamma distribution with parameters (n, λ) .
- 9. Verify the formulae for the characteristic functions given in the Table below:-

Distribution	Characteristic Function $\phi(t), t \in \mathbb{R}$
Bernoulli (p)	$1 - p + pe^{it}$
Binomial (n, p)	$(1 - p + pe^{it})^n$
Uniform $(\{1, 2, \ldots, n\})$	$\frac{e^{it}(1-e^{it})}{n(1-e^{int})}$
Poisson (λ)	$e^{\lambda}(e^{iu-1})$
Uniform (a, b)	$\frac{e^{ibt}-e^{iat}}{i(b-a)t}$
Normal (m, σ^2)	$e^{-imt-t^2rac{\sigma^2}{2}}$

Table 1: Characteristic Functions of Standard Distributions