Due: March 11th, 2009

Problems to be turned in: 1,4

1. Suppose (X, Y) is a point chosen uniformly on the triangle $\{(x, y): x \geq 0, y \geq 0, x+y=4\}$. Find the conditional probability $P(Y>1 \mid X=x)$.
2. Let $X, X_{n}, n \in \mathbb{N}$, be integrable random variables on a probability space, (Ω, \mathcal{B}, P) and \mathcal{C} be a sub- σ algebra of \mathcal{B}.
(a) Suppose $X_{n}, X \geq 0$ and $X_{n} \uparrow X$ on Ω. Then show that

$$
E\left(X_{n} \mid \mathcal{C}\right) \uparrow E(X \mid \mathcal{C})
$$

(b) Suppose $X_{n} \rightarrow X$ such that there exists a integrable Y on \mathcal{C} such that $\left|E\left(X_{n} \mid \mathcal{C}\right)\right| \leq Y \forall n$; then

$$
E\left(X_{n} \mid \mathcal{C}\right) \rightarrow E(X \mid \mathcal{C})
$$

3. Let X_{i} be i.i.d. Bernoulli (p) random variables. Define $S_{n}=\sum_{i=1}^{n} X_{i}$. For $1 \leq m \leq n$, find the conditional distribution of S_{m} given $S_{n}=k$. Have you seen this distribution before ? Compute $E\left(S_{m} \mid S_{n}=k\right)$ and $\operatorname{Var}\left(S_{m} \mid S_{n}=k\right)$.
4. The number of eggs laid by a certain kind of insect follows a Poisson distribution. It is known that two such insects have laid their eggs in a particular area. If the total number of eggs in the area is 150 , what is the chance that the first insect laid at least 90 eggs?
5. Suppose X is distributed uniformly on $(-1,1)$ and given $X=x, Y$ is distributed uniformly on $\left(-\sqrt{1-x^{2}}, \sqrt{1-x^{2}}\right)$. What is the joint distribution of (X, Y) ?
6. Let X be a real valued random variable on (Ω, \mathcal{F}, P) with characteristic function ϕ. Show that
(a) ϕ is a bounded continuous function with $\phi(0)=1$
(b) If $E\left(|X|^{m}\right)<\infty$ for some positive integer m, then show that ϕ is m-times differentiable.
7. Let $n \in \mathbb{N}$ and X be an \mathbb{R}^{n} valued random variable on (Ω, \mathcal{F}, P). Define its characteristic function to be

$$
\phi_{X}(a)=E\left(e^{i<X, a>}\right)
$$

where $a \in \mathbb{R}^{n}$ and $<X, a>(\omega)=\sum_{j=1}^{n} X_{j}(\omega) a_{j}$.
(a) Generalise Theorem (on Uniqueness) to such random vectors.
(b) For any vector $\alpha \in \mathbb{R}^{n}$ and matrix $B \in M_{n \times n}(\mathbb{R})$ show that $\phi_{\alpha+B X}(a)=e^{i<\alpha, a>} \phi_{X}\left(B^{T} a\right)$, where B^{T} is the transpose of the matrix B. (Vectors are thought of as column vectors.)
(c) Suppose $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where each $\left\{X_{i}: 1 \leq i \leq n\right\}$ is a real valued random variable on (Ω, \mathcal{B}, P). Then show that $\left\{X_{i}: 1 \leq i \leq n\right\}$ are independent if and only if

$$
\phi_{X}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\prod_{i=1}^{n} \phi_{X_{i}}\left(a_{i}\right)
$$

where $a_{i} \in \mathbb{R}$, for $1 \leq i \leq n$.
8. Find the characteristic function of the Gamma distribution with parameters (n, λ).
9. Verify the formulae for the characteristic functions given in the Table below:-

Distribution	Characteristic Function $\phi(t), t \in \mathbb{R}$
Bernoulli (p)	$1-p+p e^{i t}$
Binomial (n, p)	$\left(1-p+p e^{i t}\right)^{n}$
Uniform $(\{1,2, \ldots, n\})$	$\frac{e^{i t}\left(1-e^{i t}\right)}{n\left(1-e^{i n t}\right)}$
Poisson (λ)	$e^{\lambda}\left(e^{i u-1}\right)$
Uniform (a, b)	$\frac{e^{i b t}-e^{i a t}}{i(b-a) t}$
Normal $\left(m, \sigma^{2}\right)$	$e^{-i m t-t^{2} \frac{\sigma^{2}}{2}}$

Table 1: Characteristic Functions of Standard Distributions

