Due: February 18th, 2008

Problems to be turned in: 1,4,8,9

1. Suppose that a store buys b items in anticipation of a random demand Y, where the possible values of Y are non-negative integers y representing the number of items in demand. Suppose that each item sold brings a profit of β Rupees and each item stocked but unsold brings a loss of λ Rupees. Show that the expected loss is minimized over all b at the least integer y such that $P(Y \geq y) \geq \frac{\beta}{\beta+\lambda}$. Discuss the case $\beta=\lambda$ and $\frac{\beta}{\lambda+\beta}=\frac{k}{100}$.
2. Let $X \stackrel{d}{=}$ Uniform $\{1,2, \ldots, n\}$. Find $E(X)$ and $\operatorname{Var}(X)$. Let $Y \stackrel{d}{=} \operatorname{Uniform}\{a, a+1, \ldots, a+(n-1) b\}$. Find $E(Y)$ and $\operatorname{Var}(Y)$ in terms of a, b and n.
3. A random variable X has expectation 10 and standard deviation 5. Find the smallest upper bound on $P(X \geq 20)$ and decide whether X can be distributed as $\operatorname{Binomial}(n, p)$ for some n, p.
4. Let S be the sum of numbers obtained by rolling two biased dice with possibly different biases described by probabilities $p_{1}, p_{2}, \ldots p_{6}$, and $r_{1}, r_{2} \ldots r_{6}$, all assumed to be non-zero.
(a) Find the distribution of S.
(b) Show that $P(S>7)>P(S=2) \frac{r_{6}}{r_{1}}+P(S=12) \frac{r_{1}}{r_{6}}$
(c) Deduce that no matter how the two dice are biased, the numbers 2,7 , and 12 cannot be equally likely values for the sum. In particular, the sum cannote be uniformly distributed on the numbers from 2 to 12 .
(d) Do there exist positive integers a and b and independent non-constant random variables X and Y such that $X+Y$ has uniform distribution on the set of integers $\{a, a+1, \ldots, a+b\}$?
5. Let $\lambda>0$. Suppose $T \stackrel{d}{=} \exp (\lambda)$, then determine the distribution of $G=[T]$ the greatest integer less than or equal to T.
6. Let $r>0, \lambda>0$. Suppose $\gamma \stackrel{d}{=} \operatorname{Gamma}(r, \lambda)$.
(a) For $k>0$, show that the k-th moment of γ is $\frac{1}{\lambda^{k}} \frac{\Gamma(r+k)}{\Gamma(r)}$, where

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x}, \text { for } s>0
$$

(b) If $r=1$ then show that k-th moment of γ is $\frac{k!}{\lambda^{k}}$
7. Consider independent $\operatorname{Bernoulli}(p)$ trials. Let Y be a random variable that denotes the trial at which the r th Head appears.
(a) Find the distribution of $Y . Y$ is said to be distributed as Negative Binomial (r, p).
(b) Calculate its mean and variance.
8. Suppose two teams play a series of games, each producing a winner and a loser, until one team has won two more games than the other. Let G be the total number of games played. Assuming each team has chance 0.5 to win each game, independent of results of the previous games. Find $E(G)$.
9. Let $\left\{X_{k}: 1 \leq k \leq n\right\}$ be independent continuous random variables with identical distributed as Uniform $(0,1)$. Let

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(k)} \leq \ldots \leq X_{(n)}
$$

be the increasing rearrangement of the random variables $\left\{X_{k}: 1 \leq k \leq n\right\}$. That is $X_{(1)}$ is the smallest of $\left\{X_{k}: 1 \leq k \leq n\right\}, X_{(2)}$ is the next smallest and so on. Show that the density of $X_{(k)}$ is given by

$$
f_{(k)}(x)=\frac{1}{B(k, n-k+1)} x^{k-1}(1-x)^{n-k}, 0<x<1
$$

where $B(r, s)=\int_{0}^{1} x^{r-1}(1-x)^{s-1} d x$, for any $r, s>0 . X_{(k)}$ is referred to as the k-th order statistic and is said to have $\operatorname{Beta}(k, n-k+1)$ distribution.

