## Due: February 9th, 2008

Problems to be turned in: 6,7,10,11

1. Let $X$ be the number of heads in three tosses of a fair coin.
(a) Display the distribution of $X$ in a table.
(b) Find the distribution of $|X-1|$.
2. A box contain $2 n$ balls of $n$ different colours, with 2 of each colour. Balls are picked at random from the box with replacement until two balls of the same colour have appeared. Let $X$ be the number of draws made. Find the distribution of $X$. \{Hint: Find $P(X>k)$ \}
3. Let $W_{1}$ and $W_{2}$ be independent geometric random variables with parameters $p_{1}$ and $p_{2}$. Find:
(a) $P\left(W_{1}=W_{2}\right)$
(b) $P\left(W_{1}<W_{2}\right)$
(c) $P\left(W_{1}>W_{2}\right)$
(d) distribution of $\min \left(W_{1}, W_{2}\right)$
4. In $n+m$ independent Bernoulli( p ) trials, let $S_{n}$ be the number of successes in the first $n$ trials, $T_{m}$ the number of successes in the last $m$ trials.
(a) What is the distribution of $S_{n}$ ?
(b) What is the distribution of $T_{m}$ ?
(c) What is the distribution of $S_{m}+T_{n}$ ?
5. Suppose that the number of earthquakes $X$ that occur in a year, anywhere in the world, is a Poisson random variable with mean $\lambda$. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is $p$. Let $N$ be the number of earthquakes with magnitude at least 5 in a year. Find the distribution of $N$.
6. At the Universal Cricket Council, five day test matches are played on a "best of 5 one day games" basis, that is teams A and B play until one of them has won 3 one day games. Suppose each game is won by team A with probability $p$, independently of all other games.
(a) For each $g=3,4,5$, find a formula in terms of $p$ that team $A$ wins the UCC test match in exactly $g$ games.
(b) Given that
i. player A won the UCC five day test match what is the probability in terms of $p$ that the match lasted only three games?
ii. $B$ has won games 1 and 2 what is the probability in terms of $p$ that team A wins the UCC five day test match.
(c) Let $X$ be a $\operatorname{Binomial}(5, \mathrm{p})$ random variable. Is $P(\mathrm{~A}$ wins $)=P(X \geq 3)$ ? Explain your answer intuitively as well.
(d) Let $G$ represent the number of games played. What is the distribution of $G$ ? For what value of $p$ is G independent of the winner of the series ?
7. (a) If $\mu$ is a probability measure defined on the Borel $\sigma$ - algebra $\mathcal{B}$ of $\mathbb{R}$, define $F: \mathbb{R} \rightarrow[0,1]$ by $F(x)=$ $\mu((-\infty, x])$, and verify that
(i) $F$ is monotonically non-decreasing - i.e. $x \leq y \Rightarrow F(x) \leq F(y)$ - and right continuous - i.e., $\lim _{y \downarrow x} F(y)=$ $F(x)$;
(ii) $F$ is discontinuous at $x$ if and only if $\mu(\{x\})>0$; and
(iii) $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$.

The function $F$ is referred to as the distribution function of $\mu$.
(b) Conversely, if $F: \mathbb{R} \rightarrow[0,1]$ is a function satisfying (i) and (iii) above, (imitate the construction of Lebesgue measure to) show that there exists a unique probability measure $\mu$ on $\mathbb{R}$ such that $\mu((-\infty, x])=$ $F(x)$ for all $x$ in $\mathbb{R}$.
(c) Generalise (a) and (b) above to the case of $\sigma$-finite (rather than just probability) measures.
8. Let $(\Omega, \mathcal{B}, P)$ be a probability space. Suppose
(a) $X$ is discrete, with range $\left\{x_{i}: i \in \mathbb{N}\right\}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ then $E(g(X))=\sum_{i=1}^{\infty} g\left(x_{i}\right) P\left(X=x_{i}\right)$, provided $\sum_{i=1}^{\infty}\left|g\left(x_{i}\right)\right| P\left(X=x_{i}\right)<\infty$.
(b) $X$ is absolutely continuous with density $f$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ then $E(g(X))=\int g(x) f(x) d x$ provided $\int|g(x)| f(x) d x<\infty$.
9. The moment generating function of a random variable $X$ is defined to be the function $M_{X}(t)=$ $E\left(e^{t X}\right)=\sum_{n=0}^{\infty} \frac{E\left(X^{n}\right)}{n!} t^{n}$. Let $I=\left\{t \in \mathbb{R}: M_{X}(t)<\infty\right\}$. Show that
(a) $I$ is a (possibly degenerate) interval and $0 \in I$.
(b) $M_{X}(\cdot)$ is a continuous convex function on $I$.
(c) if 0 is an interior point of $I$ then $E\left(X^{k}\right)<\infty$ for all $k \in \mathbb{N}$ (i.e. X has finite moments of all orders)
10. Let $X$ be a random variable on the probability space $\left(\Omega, \mathcal{B}, P_{\tilde{\sim}}\right.$, with distribution $P_{X}$. Consider the random variable $\widetilde{X}$ on the probability space $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P_{X}\right)$ defined by $\widetilde{X}(x)=x$. Then $P_{\tilde{X}}=P_{X}$.
11. Let $F: \mathbb{R} \rightarrow[0,1]$ be a distribution function of a probability measure $P$ (i.e. $F(x)=P((-\infty, x]))$. Then show that there is a random variable $X:((0,1], \mathcal{B}, \lambda) \rightarrow \mathbb{R}$, (where $\mathcal{B}$ is the Borel $\sigma$-algebra and $\lambda$ is Lebesgue measure), such that $P_{X}=P$
12. Let $X: \Omega \rightarrow \mathbb{N}$ be a random variable on a probability space $(\Omega, \mathcal{B}, P)$. Show that

$$
E(X)=\sum_{n=1}^{\infty} P(X \geq n)
$$

13. Show that the following are equivalent: (a) A family $A_{i}$ of events is independent; (b) The family $\sigma\left(1_{A_{i}}\right)$ of $\sigma$-algebras is independent.
14. Let $X, Y$ be random variables on a probability space $(\Omega, \mathcal{B}, P)$. Show that $X$ and $Y$ are independent if and only if $\sigma(X)$ and $\sigma(Y)$ are independent.
