Due: February 9th, 2008

Problems to be turned in: 6,7,10,11

- 1. Let X be the number of heads in three tosses of a fair coin.
 - (a) Display the distribution of X in a table.
 - (b) Find the distribution of |X 1|.
- 2. A box contain 2n balls of n different colours, with 2 of each colour. Balls are picked at random from the box with replacement until two balls of the same colour have appeared. Let X be the number of draws made. Find the distribution of X. {*Hint: Find* P(X > k) }
- 3. Let W_1 and W_2 be independent geometric random variables with parameters p_1 and p_2 . Find:
 - (a) $P(W_1 = W_2)$ (b) $P(W_1 < W_2)$ (c) $P(W_1 > W_2)$
 - (d) distribution of $\min(W_1, W_2)$
- 4. In n + m independent Bernoulli(p) trials, let S_n be the number of successes in the first n trials, T_m the number of successes in the last m trials.
 - (a) What is the distribution of S_n ?
 - (b) What is the distribution of T_m ?
 - (c) What is the distribution of $S_m + T_n$?
- 5. Suppose that the number of earthquakes X that occur in a year, anywhere in the world, is a Poisson random variable with mean λ . Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is p. Let N be the number of earthquakes with magnitude at least 5 in a year. Find the distribution of N.
- 6. At the Universal Cricket Council, five day test matches are played on a "best of 5 one day games" basis, that is teams A and B play until one of them has won 3 one day games. Suppose each game is won by team A with probability p, independently of all other games.
 - (a) For each g = 3, 4, 5, find a formula in terms of p that team A wins the UCC test match in exactly g games.
 - (b) Given that
 - i. player A won the UCC five day test match what is the probability in terms of p that the match lasted only three games ?
 - ii. B has won games 1 and 2 what is the probability in terms of p that team A wins the UCC five day test match.
 - (c) Let X be a Binomial(5,p) random variable. Is $P(A \text{ wins}) = P(X \ge 3)$? Explain your answer intuitively as well.
 - (d) Let G represent the number of games played. What is the distribution of G? For what value of p is G independent of the winner of the series ?
- 7. (a) If μ is a probability measure defined on the Borel σ algebra \mathcal{B} of \mathbb{R} , define $F : \mathbb{R} \to [0, 1]$ by $F(x) = \mu((-\infty, x])$, and verify that

(i) F is monotonically non-decreasing - i.e. $x \le y \Rightarrow F(x) \le F(y)$ - and right continuous - i.e., $\lim_{y \downarrow x} F(y) = F(x)$;

- (ii) F is discontinuous at x if and only if $\mu(\{x\}) > 0$; and
- (iii) $\lim_{x \to \infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$.
- The function F is referred to as the distribution function of μ .

(b) Conversely, if $F : \mathbb{R} \to [0, 1]$ is a function satisfying (i) and (iii) above, (imitate the construction of Lebesgue measure to) show that there exists a unique probability measure μ on \mathbb{R} such that $\mu((-\infty, x]) = F(x)$ for all x in \mathbb{R} .

(c) Generalise (a) and (b) above to the case of σ -finite (rather than just probability) measures.

- 8. Let (Ω, \mathcal{B}, P) be a probability space. Suppose
 - (a) X is discrete, with range $\{x_i : i \in \mathbb{N}\}$ and $g : \mathbb{R} \to \mathbb{R}$ then $E(g(X)) = \sum_{i=1}^{\infty} g(x_i) P(X = x_i)$, provided $\sum_{i=1}^{\infty} |g(x_i)| P(X = x_i) < \infty$.
 - (b) X is absolutely continuous with density f and $g : \mathbb{R} \to \mathbb{R}$ then $E(g(X)) = \int g(x)f(x)dx$ provided $\int |g(x)| f(x)dx < \infty$.
- 9. The moment generating function of a random variable X is defined to be the function $M_X(t) = E(e^{tX}) = \sum_{n=0}^{\infty} \frac{E(X^n)}{n!} t^n$. Let $I = \{t \in \mathbb{R} : M_X(t) < \infty\}$. Show that
 - (a) I is a (possibly degenerate) interval and $0 \in I$.
 - (b) $M_X(\cdot)$ is a continuous convex function on I.
 - (c) if 0 is an interior point of I then $E(X^k) < \infty$ for all $k \in \mathbb{N}$ (i.e. X has finite moments of all orders)
- 10. Let X be a random variable on the probability space (Ω, \mathcal{B}, P) , with distribution P_X . Consider the random variable \widetilde{X} on the probability space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P_X)$ defined by $\widetilde{X}(x) = x$. Then $P_{\widetilde{X}} = P_X$.
- 11. Let $F : \mathbb{R} \to [0,1]$ be a distribution function of a probability measure P (i.e. $F(x) = P((-\infty, x])$). Then show that there is a random variable $X : ((0,1], \mathcal{B}, \lambda) \to \mathbb{R}$, (where \mathcal{B} is the Borel σ -algebra and λ is Lebesgue measure), such that $P_X = P$
- 12. Let $X: \Omega \to \mathbb{N}$ be a random variable on a probability space (Ω, \mathcal{B}, P) . Show that

$$E(X) = \sum_{n=1}^{\infty} P(X \ge n).$$

- 13. Show that the following are equivalent: (a) A family A_i of events is independent; (b) The family $\sigma(1_{A_i})$ of σ -algebras is independent.
- 14. Let X, Y be random variables on a probability space (Ω, \mathcal{B}, P) . Show that X and Y are independent if and only if $\sigma(X)$ and $\sigma(Y)$ are independent.