Due: January 28th, 2008

Problems to be turned in: 3,4

1. Let $b(n, p, j)$ denote the probability of getting j successes in a $\operatorname{Binomial}(n, p)$ experiment. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be given by:

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right),-\infty<x<\infty
$$

Show that

$$
\lim _{n \rightarrow \infty} \sqrt{n p q} b(n, p,[n p+x \sqrt{n p q}])=\phi(x)
$$

2. Suppose we conduct an experiment having two outcomes ($\{S\}$ Success happens with probability p and $\{F\}$ Failure happens with probability $1-p$ for $0<p<1) n$ times. Let (Ω, \mathcal{F}, P) be the corresponding probability space. Define S_{n} to be the number of successes in n trials. Show that

$$
\lim _{n \rightarrow \infty} P\left(a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right)=\int_{a}^{b} \phi(x)
$$

3. Show that the, m, Mode of the $\operatorname{Binomial}(n, p)$ distribution is given by $m=[n p+p]$. Further clarify that (depending on n, p)
(a) if $n p$ happens to be an integer then $m=n p$.
(b) if $n p$ is not an integer then m is one of the two integers to either side of $n p$.
(c) m may not necessarily be closest integer to $n p$ and neither is m always the integer above $n p$ nor the integer below it.
4. An airline knows that over the long run, 90% of passengers who reserve seats show up for their flight. On a particular flight with 300 seats, the airline accepts 324 reservations.
(a) Assuming that passengers show up independently of each other, what is the chance that the flight will be overbooked?
(b) Suppose that people tend to travel in groups. Would that increase of decrease the probability of overbooking? Explain your answer.
(c) Redo the calculation a) assuming that the passengers always travel in pairs. Check that your answers to (a), (b) and (c) are consistent.
5. Let $z>0$. If $\Phi(z)=\int_{-\infty}^{z} \phi(x) d x$ then show that $1-\Phi(z) \leq \frac{\phi(z)}{z}$
6. Let S_{25} be the number of successes in a Binomial $\left(25, \frac{1}{10}\right)$ experiment.
(a) Find m
(b) Find $P(S=m)$ correct upto 3 decimal places.
(c) What is the value of the Normal approximation to $P(S=m)$?
(d) What is the value of the Poisson approximation to $P(S=m)$?
(e) Repeat the above if 25 is replaced by 2500 . Compare the approximations given by Normal and Poisson. Repeat the same with 2500 and $\frac{1}{10}$ replaced by $\frac{1}{1000}$
