Problems due: 1,2
Due Date: Friday October 24th, 2014.

1. Solve (graphically) the linear programming problem:

$$
\begin{array}{rc}
\text { Maximize } & x_{1}+x_{2} \\
\text { Subject to } & 2 x_{1}+x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

2. Find the dual to the linear programming problem:

$$
\begin{array}{cc}
\text { Maximize } & x_{1}+2 x_{2} \\
\text { Subject to } & x_{1}+2 x_{2}=6 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

3. Find the basic solutions of the following system:

$$
\begin{array}{cc}
\text { Maximize } & x_{1}+2 x_{2} \\
\text { Subject to } & x_{1}+2 x_{2}+x_{3}=6 \\
& x_{1}-x_{2}+x_{3}=3 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

4. Let $A_{m \times n}$ be a matrix such that $\operatorname{rank}(A)=m$. Consider the linear programming problem:

$$
\begin{array}{rc}
\text { Minimize } & c^{T} x \\
\text { Subject to } & A x=b \\
& x \geq 0
\end{array}
$$

A basic feasible solution is degenerate if it has more than $n-m$ zeros.
(a) If two different bases correspond to a single basic feasible solution then show that it the basic feasible solution is degenerate.
(b) If a basic feasible solution is degenerate then does it correspond necessarily to two different bases?
5. Let P be the primal linear program in cannonical form and D be its dual. Show that the dual of D is P.

