Problems due: X where X is Uniform $\{1,6,7\}$

Due Date: Friday October 10th, 2014.

1. Consider the matrix A to be one of the following:-

$$
\left[\begin{array}{rrrr}
2 & -1 & 1 & 3 \\
1 & 0 & 1 & 1 \\
0 & 2 & 2 & -2 \\
-1 & 1 & 0 & -2
\end{array}\right],\left[\begin{array}{rrr}
7 & -6 & 6 \\
2 & 0 & 4 \\
1 & -2 & 6
\end{array}\right] .
$$

For each choice of A :
(a) Find non-singular matrix $P_{n \times n}$ of order n and a diagonal non-singular matrix $D_{r \times r}$ such that

$$
A=P\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] P^{T}
$$

(b) There exists non-zero real numbers $d_{1}, \ldots d_{r}$ (not necessarily disttinct) and orthonormal vectors $u_{1}, u_{2}, \ldots u_{r}$ and $v_{1}, v_{2}, \ldots v_{r}$ such that

$$
A=\sum_{i=1}^{r} d_{i} u_{i} v_{i}^{T}
$$

$v_{i}^{T} u_{j}=0$ if $i \neq j$ and 1 otherwise.
2. Let $A_{n \times n}$ be a Hermitian matrix. Show that its eigen values are real.
3. Let $A_{n \times n}$ be a real matrix with real eigen values. Show that it is orthogonally similar to an upper triangular matrix.
4. Let $A_{n \times n}$ be a real matrix. Show that it is orthogonally similar to diagonal matrix if and only if it is symmetric.
5. Let $A_{n \times n}$ be a real matrix with rank r. Show that
(a) There exists an orthogonal matrix $P_{n \times n}$ of order n and a real diagonal non-singular matrix $D_{r \times r}$ such that

$$
A=P\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] P^{T}
$$

(b) There exists non-zero real numbers $d_{1}, \ldots d_{r}$ (not necessarily disttinct) and orthonormal vectors $u_{1}, u_{2}, \ldots u_{r} \in \mathbb{R}^{n}$ such that

$$
A=\sum_{i=1}^{r} d_{i} u_{i} u_{i}^{T}
$$

6. Find a unitary matrix Q such that $Q^{\star} A Q$ is upper triangular and an orthogonal matrix P such that $P^{T} B P$ is diagonal when :-

$$
A=\left[\begin{array}{rrr}
-7 & -13 & -5 \\
2 & 5 & -5 \\
-8 & -2 & 11
\end{array}\right], B=\left[\begin{array}{rrr}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right]
$$

7. Compute a singular value decomposition of

$$
A=\left[\begin{array}{rrrr}
2 & 1 & 0 & 1 \\
-1 & 1 & 1 & -2 \\
1 & 2 & 1 & -1
\end{array}\right]
$$

