Problems due: X where $X \in$ uniform $\{2,5\}$

Due Date: Wed October 1st, 2014.

1. Find the best-fit (least-squares ${ }^{1}$) line $y=\beta x+c$ for the points below.

x	1	2	4	5
y	1	2	2	3

2. (GS Ex 3.37, page 200) Find an othonormal basis for the column space of A and using the $Q R$ decomposition of A find the least square solution to $A x=b$ where

$$
A=\left[\begin{array}{rr}
1 & -6 \\
3 & 6 \\
4 & 8 \\
5 & 0 \\
7 & 8
\end{array}\right] \text { and } b=\left[\begin{array}{r}
-3 \\
7 \\
1 \\
0 \\
4
\end{array}\right]
$$

3. (BR Page 265)Consider the vector space \mathcal{P}_{4} of all polynomials over \mathbb{R} with degree atmost 3. Fix the set $\left\{a_{1}=\frac{-3}{2}, a_{2}=\frac{-1}{2}, a_{3}=\frac{1}{2}, a_{4}=\frac{3}{2}\right\}$ and for any $x, y \in \mathcal{P}_{4}$ define the inner product to be

$$
\langle x, y\rangle=\sum i=1^{4} x\left(a_{i}\right) y\left(a_{i}\right)
$$

(a) Find an orthonormal basis for \mathcal{P}_{4} by applying Gram-schmidt to $\left\{1, t, t^{2}, t^{3}\right\}$.
(b) Find the polynomial of degree 3 that passes through the points $\left(\frac{-3}{2}, 1\right),\left(\frac{-1}{2}, 2\right),\left(\frac{1}{2}, 3\right)\left(\frac{3}{2}, 4\right)$.
(c) Find the polynomial of degree 3 that passes through the points $(5,15),(7,18),(9,25)(11,26)$.
(d) Describe the procedure to find best-fit polynomial of degree 2 that passes through the points $\left(\frac{-3}{2}, 1\right),\left(\frac{-1}{2}, 2\right),\left(\frac{1}{2}, 3\right)\left(\frac{3}{2}, 4\right)$.
4. Let $A_{m \times n}$ be a matrix with $\operatorname{rank}(A)=r$. Find the $\operatorname{rank}\left(A A^{\star}\right)$
5. (BR Ex 9 page 293)Find a rank-factorisation of the matrix

$$
C=\left[\begin{array}{rrrrr}
2 & 4 & 2 & 4 & 4 \\
1 & 2 & 1 & 2 & 2 \\
3 & 0 & 3 & 3 & 0 \\
0 & -4 & 0 & -2 & -4 \\
5 & 2 & 5 & 6 & 2
\end{array}\right]
$$

and hence its characteristics roots.
6. Determine Eigen-values and Eigen-spaces for

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
1 & 1 \\
0 & i
\end{array}\right]
$$

[^0]
[^0]: ${ }^{1}$ I.E. the line or coefficients m, c that minimises the $\sum_{i=1}^{4}\left(y_{i}-m x_{i}-c\right)^{2}$.

