Problems due: X, where $X \in \operatorname{Uniform}\{2,4,6\}$
Due Date: Friday September 26th, 2014.

1. For any two subspaces S and T of a vector space V, show that

$$
\operatorname{dim}(S+T)=\operatorname{dim}(S)+\operatorname{dim}(S)-\operatorname{dim}(S \cap T)
$$

2. For any two subspaces S and T of a vector space V, show that

$$
S \cap T=\{0\} \Longleftrightarrow S+T \text { is direct }
$$

3. Show that for any two matrices A and B

$$
\operatorname{rank}(A)+\operatorname{rank}(B) \geq \operatorname{rank}(A+B)
$$

. From this conclude that for a matrix $P_{n \times n}$,

$$
\mathcal{C}(P)+\mathcal{C}(I-P)=\mathcal{C}(P) \oplus \mathcal{C}(I-P) \text { iff } \operatorname{rank}(P)+\operatorname{rank}(I-P)=n .
$$

4. Find the matrix P such that it is the orthogonal projection onto the column space of A when A is one of the following:

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & 3 & -2 \\
-1 & -3 & 2
\end{array}\right],\left[\begin{array}{rrr}
3 & 2 & 1 \\
1 & 3 & -2 \\
-2 & 1 & -3
\end{array}\right]
$$

5. Find $\left(A^{\perp}\right)^{\perp}$ for any set A of vectors.
6. Let

$$
W=\left\{\left[\begin{array}{c}
\alpha \\
1 \\
1
\end{array}\right]: \alpha \in \mathbb{R}\right\} .
$$

Let S be a subspace of \mathbb{R}^{3} which is a translate of W. Find the orthogonal projection of of $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ into W and into S.

