Problems due: 5
Due Date: Friday September 5th, 2014.

1. Find necessary and sufficient conditions when $\langle x, y\rangle=\sum_{i=1}^{n} \alpha_{i} x_{i} y_{i}$ is an inner product on \mathbb{R}^{n}.
2. Let $m, n \in \mathbb{N}$ and \mathcal{P}_{n} be the set of all polynomials of degree less than or equal to $n-1$ over \mathbb{R}. Let $A=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}$. Decide whether

$$
\langle p, q\rangle=\sum_{i=1}^{m} p\left(a_{i}\right) q\left(a_{i}\right)
$$

is an inner product on \mathcal{P}_{n}.
3. Let V be a vector space and d be a metric on it. Does d always arise from a norm ?
4. Show that

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1} \\
& \|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{\infty}
\end{aligned}
$$

and in general for $1<p<q$

$$
c(n, p, q)\|x\|_{p} \leq\|x\|_{q} \leq\|x\|_{p}
$$

for some $c(n, p, q)$.
5. Let $S_{1, p}=\left\{x \in \mathbb{R}^{2}:\|x\|_{p}=1\right\}$. Sketch $S_{1, p}$ for $p=1,2,3, \infty$

