Problems due: 6
Due Date: Wednesday August 27th, 2014.

1. Prize question: Prove convexity of exponential function without using derivatives from calculus.
2. (BR Ex 2 page 190) Obtain a system $A x=b$ for which the solution set is given by

$$
S=\left\{\left[\begin{array}{r}
1+4 \alpha+3 \beta \\
2+3 \alpha \\
1+8 \beta \\
\alpha+5 \beta
\end{array}\right]: \alpha, \beta \in \mathbb{R}\right\}
$$

3. (BR Ex 13 (c) page 192) Let $A_{m \times n}$ be a matrix with column space $\mathcal{C}(A)$. Let $b \in \mathcal{C}(A)$. Show that $A x=b$ has a solution belonging to $\mathcal{C}(A)$ if and only if $m=n$ and $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{2}\right)$
4. (BR Ex 17 page 193) Suppose $A_{m \times n} x=b$ is consistent and $v^{T} \in \mathcal{R}(A)$, the row space of A. Then show that $\left(A+u v^{T}\right) x=b$ is consistent.
5. If $A_{m \times n}$ is a matrix with $m>n$ then does $A x=0$ always have a non-zero solution ?
6. Solve the system $A x=b$, find the rank, rank-factorisation of A and a basis for the nullspace of A when

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
2 & 1 & 4 & 1 \\
1 & 1 & -1 & -1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

