Problems due:
Due Date: Friday August 22nd, 2014.

1. Using Linear Algebra solve the system of equations to find the interpolating polynomial $y=p(\cdot)$ from the data:

t	0	1	2
y	-1	3	6

2. (BR Ex 5 Page 190) Obtain a system $A x=b$ for which :

$$
\{x: A x=b\}=\left\{x: x=\left[\begin{array}{c}
1+4 \alpha+3 \beta \\
2+3 \alpha \\
1+8 \beta \\
\alpha+5 \beta
\end{array}\right], \alpha, \beta \in \mathbb{R}\right\}
$$

3. Consider the system given by $A x=b$ where

$$
A=\left[\begin{array}{rrr}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right] \text { and } b=\left[\begin{array}{r}
5 \\
-2 \\
9
\end{array}\right]
$$

(a) Perform the following elementary row operations in the following sequence: $R_{21}(-2), R_{31}(1), R_{32}(1)$ on the matrix A and b separately. The system will reduce to $U x=c$, find U and c.
(b) Let P be the corresponding transforming matrix from the above operations that ensures $P A=U$.
(c) Find $L=P^{-1}$ and notice that $L=P U$.
4. (GS Ex 9 page 40)Using elementary row operations find the factors Q, L and U for the matrices A below

$$
\left[\begin{array}{ll}
2 & 1 \\
8 & 7
\end{array}\right],\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 4 & 4 \\
1 & 4 & 8
\end{array}\right]
$$

such that $Q A=L U$ with Q, L, U as discussed in class.

