Problems due: 1,6
Due Date: Friday August 8th, 2014.

1. (GS Ex 32, page 19) Use Gaussian elimination to solve
(a) $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & -4\end{array}\right] x=\left[\begin{array}{r}6 \\ 11 \\ 3\end{array}\right]$
and
(b) $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & -4\end{array}\right] x=\left[\begin{array}{r}7 \\ 10 \\ 3\end{array}\right]$
2. Show that interchanging two rows can be effected by elementary row operations of the other two types.
3. (BR Ex 11, page 162) Let $B_{m \times n}$ be a matrix that is obtained from $A_{m \times n}$ via elementary row operations. Is the transforming matrix $P$ unique?
4. (BR Ex 2, page 172) Reduce each of the following to a matrix in reduced echelon form by elementary row operations:
(a) $\left[\begin{array}{rrrrr}2 & 1 & 0 & 0 & 1 \\ 3 & 0 & 3 & 0 & 2 \\ 5 & 7 & -9 & 2 & 5\end{array}\right]$,
(b) $\left[\begin{array}{rrrrr}0 & 2 & 4 & 3 & 0 \\ 0 & 5 & 10 & 7.5 & 0 \\ 0 & 1 & 2 & 1.5 & 4 \\ 0 & 2 & 4 & 3 & 2\end{array}\right]$

Further, obtain the rank, a basis for the row space (from the rows of the matrices), a basis for the column space (from the column space of the matrices), and a rank factorisation for each.
5. Let $B_{m \times n}$ be a matrix that is obtained by reducing the $l$-th column of $A_{m \times n}$ to $e_{k}$ for some $1 \leq l \leq n$ and $1 \leq k \leq m$ via elementary row operations. Prove that $i_{1}, i_{2}, \ldots i_{p}$ th rows of $B$ are linearly independent if and only if the corresponding rows of $A$ are linearly independent, provided $k$ is included in $i_{1}, i_{2}, \ldots i_{p}$
6. Suppose it takes $k$ steps to reduce $A_{m \times n}$ to its echelon form (with $r$ non-null rows) $B_{m \times n}$ via elementary row operations. Let $v$ be the vector (described in class) that kept track of the interchange of rows. Show that $\left\{A_{v_{1} *}, A_{v_{2} *}, \ldots A_{v_{r} *}\right\}$ form a basis for the row space of $A$. Space basis.

