Problems due: 1,6 Due Date: Friday August 8th, 2014.

1. (GS Ex 32, page 19) Use Gaussian elimination to solve

	1	1	1		6			1	1	1		7	
(a)	1	2	2	x =	11	and	(b)	1	2	2	x =	10	ĺ
	2	3	-4		3			2	3	-4		3	

- 2. Show that interchanging two rows can be effected by elementary row operations of the other two types.
- 3. (BR Ex 11, page 162) Let $B_{m \times n}$ be a matrix that is obtained from $A_{m \times n}$ via elementary row operations. Is the transforming matrix P unique ?
- 4. (BR Ex 2, page 172) Reduce each of the following to a matrix in reduced echelon form by elementary row operations:

	۲ <u>م</u>	1	0	0	1.	1	0	2	4	3	0	
(a)		1	0 9	0	1	$\left],$ (b)	0	5	10	7.5	0	
	3	0	3	0	2		0	1	2	1.5	4	
	5	7	-9	2	5.]	0	2	4	3	2	

Further, obtain the rank, a basis for the row space (from the rows of the matrices), a basis for the column space (from the column space of the matrices), and a rank factorisation for each.

- 5. Let $B_{m \times n}$ be a matrix that is obtained by reducing the *l*-th column of $A_{m \times n}$ to e_k for some $1 \le l \le n$ and $1 \le k \le m$ via elementary row operations. Prove that $i_1, i_2, \ldots i_p$ th rows of *B* are linearly independent if and only if the corresponding rows of *A* are linearly independent, provided *k* is included in $i_1, i_2, \ldots i_p$
- 6. Suppose it takes k steps to reduce $A_{m \times n}$ to its echelon form (with r non-null rows) $B_{m \times n}$ via elementary row operations. Let v be the vector (described in class) that kept track of the interchange of rows. Show that $\{A_{v_1*}, A_{v_2*}, \ldots, A_{v_r*}\}$ form a basis for the row space of A. Space basis.