1. Determine the value and optimal strategies for the 2-person zero-sum game with payoff matrix

$$
\left(\begin{array}{ll}
2 & 3 \\
5 & a
\end{array}\right),
$$

where $a \in \mathbb{R}$.
2. Consider the following LP. which is from a 2-person

$$
\begin{array}{ll}
\max & v \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} p_{j} \geq v \text { for } i=1, \ldots, m \\
& \sum_{i=1}^{m} p_{i}=1 \\
& p \geq 0, v \in \mathbb{R}
\end{array}
$$

Find the dual problem and use Lagrange's theorem to find sufficient conditions for existence of optimal strategy.
3. Let the matrix $A_{m \times n}$ define a two-person zero sum game. Show that there exist numbers $p_{1}, \ldots p_{m}$ and q_{1}, \ldots, q_{n} with $p_{i}, q_{j} \geq 0, \sum_{j=1}^{n} p_{j}=\sum_{i=1}^{m} q_{i}=1$ such that

$$
\sum_{i, j} a_{i j} p_{i}^{\prime} q_{j} \leq \sum_{i, j} a_{i j} p_{i} q_{j} \leq \sum_{i, j} a_{i j} p_{i} q_{j}^{\prime}
$$

for all number $p_{1}^{\prime}, \ldots p_{m}^{\prime}$ and $q_{1}^{\prime}, \ldots, q_{n}^{\prime}$ with $p_{i}^{\prime}, q_{j}^{\prime} \geq 0, \sum_{j=1}^{n} p_{j}^{\prime}=\sum_{i=1}^{m} q_{i}^{\prime}=1$ and explain why this implies the existence of optimal strategy for the game.
4. Each player selects a number from $1,2,3,4,5$. The players reveal their number and the player with the smaller number wins 2 rupees, unless the numbers are adjacent. In that case the player with the larger number wins 1 rupee. If the numbers are tied then the payoff is 0 . Construct the payoff matrix for this zero sum game. Find the optimal strategy for player 2 .

