Due Date: March 11th, 2009
Problems to be turned in: 1,2

1. Solve (graphically), the linear programming problem :

$$
\begin{array}{cc}
\text { maximise } & x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 1 \\
& x_{i} \geq 0, i=1,2 .
\end{array}
$$

2. Find the dual of the following linear programming problem:

$$
\begin{array}{cc}
\text { maximise } & x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+2 x_{2}=6 \\
& x_{1}-x_{2} \leq 3 \\
& x_{i} \geq 0, i=1,2
\end{array}
$$

3. Find the basic solutions of the following system:

$$
\begin{array}{rc}
\text { maximise } & x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+2 x_{2}+z_{1}=6 \\
& x_{1}-x_{2}+z_{2}=3 \\
& z_{i}, x_{i} \geq 0, i=1,2
\end{array}
$$

4. If a basic feasible solution is degenerate then does it correspond necessarily to two different bases ?
5. Let P be the primal linear program in canonical form and D be its dual. Show that the dual of D is P.
