Due Date: February 18th, 2009

Problems to be turned in: 1

1. A person consumes three commodities. Suppose the utility function was given by:

$$
u\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=x_{1}^{\frac{1}{3}}+\min \left(x_{2}, x_{3}\right)
$$

Assume that the person has a postive income I, and (positive) prices of the commodities are p_{1}, p_{2}, p_{3}. Is there a solution to the utilitiy maximisation problem? If yes then can you use Kuhn-Tucker to characterise the solutions ?
2. A firm produces a single output y using three inputs x_{1}, x_{2}, x_{3} in non-negative quantities through the relationship

$$
y=g\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=x_{1}\left(x_{2}+x_{3}\right)
$$

The unit price of y is $p_{y}>0$, while that of the input x_{i} is $w_{i}>0, i=1,2,3$.
(a) Describe the firm's profit maximisation problem, and derive the equations that define the critical points of the Lagrangean L in this problem.
(b) Show that the Lagrangean L has multiple critical points for any choice of $\left(p_{y}, w_{1}, w_{2}, w_{3}\right)$.
(c) Show that none of these critical points identifies a solution of the profit-maximisation problem. Explain why.
3. Consider the following problem:

$$
\begin{array}{rc}
\operatorname{minimise} & \sum_{i=1}^{n} a_{i} e^{-x_{i}} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=b \\
& x_{i} \geq 0, i=1,2, \ldots, n,
\end{array}
$$

where $a_{1} \geq a_{2} \geq \ldots \geq a_{n}>0$ and $b>0$. Show that in the optimal solution $x_{1} \geq x_{2} \geq \ldots \geq x_{n}>0$ and that $x_{j}>0$ if and only if $a_{1} a_{2} \ldots a_{j}<e^{b}\left(a_{j}\right)^{j}$
4. Suppose a_{1}, a_{2}, a_{3}, b are given positive numbers. Define $\phi(b)$ as the solution to the following problem:

$$
\begin{array}{rc}
\text { minimise } & \sum_{i=1}^{3} x_{i} \\
\text { subject to } & \sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}}=b \\
& x_{i} \geq 0, i=1,2,3
\end{array}
$$

Derive an expression for $\phi(b)$ with appropriate justification. If b is changed to $b+\delta b$, compute the change in ϕ upto first order in δb.
5. Define $\phi(b)$ as the solution to the following problem:

$$
\begin{array}{rc}
\text { minimise } & \sum_{i=1}^{n} \frac{v_{i}}{x_{i}} \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i} \leq b \\
& x_{i}>0, i=1,2, \ldots, n,
\end{array}
$$

where $a_{i}>0, v_{i}>0$ for $i=1,2, \ldots, n$ and $b>0$.
Derive an expression for $\phi(b)$ with appropriate justification. If b is changed to $b+\delta b$, compute the change in ϕ upto first order in δb.
6. Find a point in \mathbb{R}^{3} at which a plane parallel to $x+2 y+z=0$ is tangent to the unit sphere.

