Due Date: January 28th, 2008

Problems to be turned in: 1(b), 5

1. Using Lagrangian multipliers, find the maxima and minima of the following fucntions subject to the specified constraints:
(a) $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x y$, subject to $x^{2}+y^{2}=2 a^{2}$.
(b) $f\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=x^{2}+2 y-z^{2}$, subject to $2 x-y=0, x+z=6$.
(c) $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x+y$, subject to $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\frac{x_{1}^{3}}{x_{1}^{2}+x_{2}^{2}},
$$

when $x \neq 0$ and $f(0)=0$. Decide whether f is differentiable at 0 . Decide whether the partial derivatives $\frac{\partial f}{\partial x_{i}}(0)$ exists for $i=1,2$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\frac{x_{1} x_{2}^{3}}{x_{1}^{2}+x_{2}^{2}}
$$

when $x \neq 0$ and $f(0)=0$. Show that f is continuously differentiable at 0 and the partial derivatives $\frac{\partial^{2} f}{\partial \partial x_{i}}(0)$ exists for $i=1,2$ but are not equal.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a differentiable function such that $D f(x)=0$ for all $x \in \mathbb{R}^{n}$. Show that f is constant.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.be the function defined by $f(x)=x+x^{2} \sin \left(\frac{1}{x^{4}}\right)$ for $x \neq 0$ and $f(0)=0$. Show that f is differentiable at 0 and $D f(0)=1$ but f is not increasing in any open set around 0 . What is the significance of this example ?
6. Let $S=\left\{x \in \mathbb{R}^{3}: x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=-1\right\}$ Decide whether for $x_{0} \in \mathbb{R}^{3}$ there exists a $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
S \cap V=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
g(x)
\end{array}\right]: x \in U\right\}
$$

where V is open in $\mathbb{R}^{3}, x_{0} \in V \cap S$ and U is open in \mathbb{R}^{2}

