Due Date: January 19th, 2008

Problems to be turned in: 3

- 1. Let $A, K \subset \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}$.
 - (a) Suppose n = 1 and a is the least upper bound of A then show that there is a sequence a_k in A such that $a_k \to a$.
 - (b) Suppose K is compact then show that for any sequence $\{x_n\} \in K$ there is a $x \in K$ and a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$.
 - (c) Suppose f is continuous and $x_n \to x$ then show that $f(x_{n_k}) \to f(x)$.
- 2. Let $p_{n\times 1}$ be an element of \mathbb{R}^n_+ and I > 0. Let $B(p, I) = \{x \in \mathbb{R}^n_+ : p^T x \leq I\}$. Decide whether B(p, I) is compact or not.
- 3. Let $c_{n\times 1} \in \mathbb{R}^n_+$, y > 0. Consider the cost minimisation problem,

Minimise
$$c_1 x_1 + c_2 x_2$$

Subject to $g(x) \ge y$
 $x_1 \ge 0, x_2 \ge 0$

where the production function $g: \mathbb{R}^2_+ \to \mathbb{R}_+$ given by

$$g(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]) = x_1^2 + x_2^2.$$

Decide whether the function can be solved by Lagrangian method or not.

4. Let $f: D \to \mathbb{R}$ be function on an open set D. Show that f is a C^1 function if and only if all partial derivatives exists on D and are continuous. Moreover in such a case,

$$Df(x) = \left[\frac{\partial f}{\partial x_j}(x)\right]$$

5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^k \to \mathbb{R}^n$. If h is differentiable at $x \in \mathbb{R}^n$ and f is differentiable at h(x). Then $f \circ h : \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at x and

$$D(f \circ h)(x) = Df(h(x))Dh(x).$$