Due Date: Jan. 12th

Problems Due: 2(g)

1. Let $D=[0,1]$ Let f be an increasing function and g be a decreasing function on D. Convince yourself that f and g both attain their maximum and minimum on D. Does $f+g$ necessarily attain a maximum and minimum on D ?
2. Minimize each of the following functions in the region specified:
(a) $3 x$ in $\{x: x \geq 0\}$
(b) $x^{2}-2 x+3$ in $\{x: x \geq 0\}$
(c) $x^{2}+2 x+3$ in $\{x: x \geq 0\}$
(d) $\lambda_{1} x^{2}+\lambda_{2} x$ in $\{x \geq 0\}$
(e) $\left(\lambda_{1}-\lambda_{2}\right) x$ in $0 \leq x \leq M$ for $\lambda_{1}, \lambda_{2} \in \mathbb{R}, M>0$
(f) $x_{1}^{2}+2 x_{2}^{2}$ in $\left\{x_{1}+3 x_{2}=b\right\}$ for $b \in \mathbb{R}$.
(g) $\frac{v_{1}}{x_{1}}+\frac{v_{2}}{x_{2}}$ in $\left\{x_{1} \geq 0, x_{2} \geq 0, a_{1} x_{1}+a_{2} x_{2} \leq b\right\}$ for strictly positive $a_{1}, a_{2}, v_{1}, v_{2}, b$
3. Suppose Suppandi-Super Factory produces $y=g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ units of output using x_{i} units of the $i-t h$ input. Let $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be the cost vector. When the firm produces y units, the unit price it can obtain for the product is given by $p(y)$. You are assigned the job of choosing an input mix that will maximise the Suppandi-super factory's profit. Set up the optimisation problem in mathematical terms and decide the hypothesis required for the problem to have a solution. ?
