Theorem 1 (Kuhn and Tucker) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $1 \leq i \leq l, h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1} functions. Suppose x^{*} is a local maximum of f on

$$
D=U \cup\left\{x \in \mathbb{R}^{n}: h_{i}(x) \geq 0, i=1, \ldots l\right\},
$$

where U is an open set in \mathbb{R}^{n}. Let $E \subset\{1, \ldots, l\}$ denote the set of effective constraints at x^{*} and let $h_{E}=\left(h_{i}\right)_{i \in E}$. Suppose $\operatorname{rank}\left(D h_{E}\left(x^{*}\right)\right)=|E|$, then there exists a vector $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{l}^{*}\right), \lambda_{i} \in \mathbb{R}$ such that the following conditions are met:

$$
\begin{align*}
& \lambda_{i}^{*} \geq 0 \text { and } \lambda_{i}^{*} h_{i}\left(x^{*}\right)=0, \text { for } i=1,2, \ldots, l \tag{0.1}\\
& D f\left(x^{*}\right)+\sum_{i=1}^{l} \lambda_{i}^{*} D h_{i}\left(x^{*}\right)=0 \tag{0.2}
\end{align*}
$$

Proof. WLOG assume that $E=\{1, \ldots k\}$. For each $i \in\{1, \ldots, l\}$, define

$$
V_{i}=\left\{x \in \mathbb{R}^{n}: h_{i}(x)>0\right\}, \text { and } V=\cup_{i=1}^{k} V_{i}
$$

Then V is open (why?). Let $D^{*} \subset D$ be such that,

$$
D^{*}=U \cap V \cap\left\{x \in \mathbb{R}^{n}: h_{i}(x)=0, i=1, \ldots, k\right\} .
$$

Clearly x^{*} is a local maximum of f in D^{*} (why?) and $\operatorname{rank}\left(D h_{E}\left(x^{*}\right)=|E|=k\right.$. Consequently, (why?) there exists a vector $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right), \mu_{i} \in \mathbb{R}$, such that

$$
D f\left(x^{*}\right)+\sum_{i=1}^{k} \mu_{i} D h_{i}\left(x^{*}\right)=0 .
$$

For $i=1,2, \ldots l$, define

$$
\lambda_{i}^{*}= \begin{cases}\mu_{i} & i=1,2, \ldots, k \\ 0 & i=k+1, \ldots, l .\end{cases}
$$

The proof will be complete if we are able to show that $\mu_{i} \geq 0, i=1,2, \ldots, k$ (why ?). We will now show that $\mu_{1} \geq 0$, the proof for the rest is similar.

Note that $\exists, y \in \mathbb{R}^{n}$ such that $D h_{1}\left(x^{*}\right) y=1, D h_{2}\left(x^{*}\right) y=0, D h_{3}\left(x^{*}\right) y=0, \ldots, D h_{k}\left(x^{*}\right) y=$ 0 (why ?). Now for each $i=1,2 \ldots, k$, define a function $g_{i}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ by

$$
g_{i}\left(\left[\begin{array}{l}
z \\
\eta
\end{array}\right]\right)=h_{i}\left(x^{*}+\eta y+D h_{E}\left(x^{*}\right)^{T} z\right)-\eta D h_{i}\left(x^{*}\right) y
$$

with $z \in \mathbb{R}^{k}$ and $\eta \in \mathbb{R}$. Let $g=\left(g_{1}, \ldots g_{k}\right)$, we have $g\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=0$ and suppose $A=D g(0,0)$, Then $A_{x}=D h_{E}\left(x^{*}\right) D h_{E}\left(x^{*}\right)^{T}$, is invertible(why ?).

By the Implicit function theorem, we have

$$
\begin{align*}
& \exists N \text { open in } \mathbb{R}: 0 \in N \text {, and } \xi: N \rightarrow \mathbb{R}^{k}: \xi(0)=0 \text { and } g(\xi(\eta), \eta)=0 \tag{0.3}\\
& D \xi(0)=0(\text { why ?) } \tag{0.4}
\end{align*}
$$

Define $\tau: N \rightarrow \mathbb{R}^{n}$ such that

$$
\tau(\eta)=x^{*}+\eta y+D h_{E}\left(x^{*}\right) \xi(\eta) .
$$

Note the following properties of τ
(i) $\tau(0)=x^{*}$.
(ii) $h_{1}(\tau(\eta))=\eta$ and $h_{i}(\tau(\eta))=0$ for $i=2, \ldots k$. So $h_{i}(\tau(\eta)) \geq 0$, for $i=1, \ldots, k$ if $\eta \geq 0$.
(iii) $D(\tau(0))=y$.

Therefore, (why ?),

$$
\begin{equation*}
D f\left(x^{*}\right) y=D f(\tau(0)) D(\tau(0))=\lim _{\eta \downarrow 0} \frac{f(\tau(\eta))-f(\tau(0))}{\eta} \leq 0 . \tag{0.5}
\end{equation*}
$$

Also

$$
\begin{equation*}
D f\left(x^{*}\right) y=-\left(\sum_{i}=1^{l} \lambda_{i}^{*} D h_{i}\left(x^{*}\right)\right) y=-\mu_{1} \tag{0.6}
\end{equation*}
$$

Matching (0.6) and (0.5) we are done.

