Quiz 16th, February, 2006.

1. A person consumes three commodities. Suppose the utility function was given by:

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{\frac{1}{3}}+\min \left(x_{2}, x_{3}\right)
$$

Given an income I, and prices of p_{1}, p_{2}, p_{3}. Is there a solution to the utilitiy maximisation problem ? If yes then can you use Kuhn-Tucker to characterise the solutions ?
2. A firm produces a single output y using three inputs x_{1}, x_{2}, x_{3} in non-negative quantities through the relationship

$$
y=g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}\left(x_{2}+x_{3}\right)
$$

The unit price of y is $p_{y}>0$, while that of the input x_{i} is $w_{i}>0, i=1,2,3$.
(a) Describe the firm's profit maximisation problem, and derive the equations that define the critical points of the Lagrangean L in this problem.
(b) Show that the Lagrangean L has multiple critical points for any choice of ($p_{y}, w_{1}, w_{2}, w_{3}, w_{4}$).
(c) Show that none of these critical points identifies a solution of the profit-maximisation problem. Explain why.
3. Let $\Phi: \Theta \rightarrow P(S)$ be a compact-valued, usc correspondence. Then, if $K \subset \Theta$ is compact, so is $\Phi(K)=\{t \in S: s \in \Phi(\theta)$ for some $\theta \in K\}$.
4. Let $\Phi: \Theta \rightarrow P(S)$ be a compact-valued correspondence. Then, Φ is usc at $\theta \in \Theta$ if and only if for all sequences $\theta_{p} \rightarrow \theta \in \Theta$ and for all sequences $s_{p} \in \Phi\left(\theta_{p}\right)$, there is a subsequence $s_{k(p)}$ of s_{p} such that $s_{k(p)}$ converges to some $s \in \Phi(\theta)$.
5. Let $D \subset R^{n}$ be compact and $f: D \rightarrow R$.
(a) If f is usc on D (i.e. if for all sequences $x_{k} \rightarrow x \lim _{\sup _{x \rightarrow \infty}} f\left(x_{k}\right) \leq f(x)$), it attains its supremum on D.
(b) If f is lsc on D (i.e. if for all sequences $x_{k} \rightarrow x \liminf _{x \rightarrow \infty} f\left(x_{k}\right) \geq f(x)$), it attains is infimum on D.
6. Assume $\Phi: R \rightarrow P(R)$ be a correspondence. Determine in each of the following whether Φ is usc and/or lsc on R.
(a) $\Phi(x)=\left[0, \frac{1}{x}\right]$ if $x>0$ and $\Phi(x)=\{0\}$ if $x<0$.
(b) $\Phi(x)=\left\{\frac{1}{x}\right\}$ if $x>0$ and $\Phi(x)=\{0\}$ if $x<0$.
(c) $\Phi(x)=[0,1]$ if $x \neq 0$ and $\Phi(x)=(0,1)$ if $x=0$.
7. Let $S=[0,2]$ and $\Theta=[0,1]$. Let $f: S \times \Theta \rightarrow R$ be defined

$$
f(x, \theta)= \begin{cases}0 & \text { if } \theta=0 \\ \frac{x}{\theta} & \text { if } \theta>0, \text { and } x \in[0, \theta) \\ 2-\left(\frac{x}{\theta}\right) & \text { if } \theta>0, \text { and } x \in[\theta, 2 \theta] \\ 0 & \text { if } x>2 \theta\end{cases}
$$

Let the correspondence $D: \Theta \rightarrow P(S)$ be defined by

$$
D(\theta)= \begin{cases}{[0,1-2 \theta]} & \text { if } \theta \in\left[0, \frac{1}{2}\right) \\ {[0,2-2 \theta]} & \text { if } \theta \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Do f and D meet all the conditions of the Maximum Theorem ? Justify. Is it the case that $D(\theta) \neq \emptyset$? If yes then determine if it is usc or lsc on Θ

