1. The H20sat. dat file in the data directory of the NMM toolbox contains saturation data for water. Use the divDiffTable function to construct the divided-difference table and extract the coefficients of the Newton interpolating polynomial in the range $30 \leq T \leq 35$.
2. Consider the following data set:

x	y
1	1
2	3
3	2
4	4

Modify splintFE to determine the coefficients of the cubic-spline interpolant with zero Fixed-Slope End conditions and plot this spline between this range.

1. Consider $y=x e^{-x}$, for $0 \leq x \leq 8$. Write a function file, using hermint, that creates a piecewisecubic Hermite approximations with $4,6,8,12$ equally spaced points. Plot all 4 of these curves and the function on 4 different graphs.
2. Find the cubic-spline passing through $(x, y)=(1,1),(2,3),(3,2)$ and $(4,4)$. and having zero slope at $x=1$ and $x=4$ using splintFE. Plot the spline.
3. Show the following Theorem for $n=2$ case.

Theorem:Assume that $f \in C^{n}([a, b])$ and that $x_{1}, x_{2}, \ldots x_{n} \in[a, b]$ are n nodes. If $x \in[a, b]$, then

$$
f(x)=P_{n-1}(x)+e_{n-1}(x),
$$

where P_{n-1} is the Lagrange Polynomial of order $n-1$ and

$$
e_{n-1}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right) f^{n}(c)}{n!}
$$

for some value $c \equiv c(x)$.
4. Let $\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right), i=1, \ldots n$ be given. Let

$$
P_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3},
$$

be the Hermite cubic interpolant in the range $\left[x_{i}, x_{i+1}\right]$. Show that under the following constraints:

$$
\begin{aligned}
& P_{i}\left(x_{i}\right)=f\left(x_{i}\right), P_{i}^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), P_{i}\left(x_{i+1}\right)=f\left(x_{i+1}\right), P_{i}^{\prime}\left(x_{i+1}\right)=f^{\prime}\left(x_{i+1}\right), 1 \leq i \leq n-1, \\
& a_{i}=f\left(x_{i}\right) \\
& b_{i}=f^{\prime}\left(x_{i}\right), \\
& c_{i}=\frac{3 f\left[x_{i}, x_{i+1}\right]-2 f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{i+1}\right)}{\left(x_{i+1}-x_{i}\right)} \\
& d_{i}=\frac{f^{\prime}\left(x_{i}\right)-2 f\left[x_{i}, x_{i+1}\right]+f^{\prime}\left(x_{i+1}\right)}{\left(x_{i+1}-x_{i}\right)^{2}}
\end{aligned}
$$

5. Complete the proof of cubic splines outlined in class for all the three possibilities.
6. Write a function file called wiggle, with input parameter n, to perform the following tasks.
(a) Compute n equally spaced points x_{k} values $(k=1, \ldots, n)$ on the interval $-1 \leq x \leq 1$.
(b) Evaluate $r\left(x_{k}\right)$ where $r:[-1,1] \rightarrow \mathbb{R}$ given by $r(x)=\frac{1}{1+25 x^{2}}$.
(c) Use the n pairs of $\left(x_{k}, r\left(x_{k}\right)\right)$ values to define a $n-1$ degree polynomial interpolant, P_{n-1}.
(d) Create 100 equally spaced points \hat{x}_{j} values $(j=1, \ldots, 100)$ in the interval $-1 \leq x \leq 1$ and evaluate $P_{n-1}\left(\hat{x}_{k}\right)$.
(e) Plot $\left(x_{k}, r\left(x_{k}\right)\right), 1 \leq k \leq 10$ with open circles; $\left(\hat{x}_{j}, r\left(\hat{x}_{j}\right)\right), j=1, \ldots, 100$ with solid line; and $\left(\hat{x}_{j}, P_{n-1}\left(\hat{x}_{j}\right)\right), j=1, \ldots, 100$ with dashed line.
(f) Print the value of $\left\|r(\hat{x})-P_{n-1}(\hat{x})\right\|_{2}$.

Run your wiggle function and see if you spot a wiggle effect for $n=5: 2: 15$ and see the behaviour of (f).

