1. glycerin. dat provides data values of viscosity of glycerine versus temperature. Write a function file newcst that returns the viscosity of glycerine as a function of temperature. The program should evaluate a cubic polynomial in a Newton Basis. You should use the divDiffTable in the NMM tool box to compute coefficients of your polynomial, store the values of these coefficients as a vector and then evaluate the Newton polynomial.
2. Consider the following data set between variables x and y :

x	1986	1988	1990	1992	1994	1996
y	113.5	132.2	138.7	141.5	137.6	144.2

(a) Creating an approrpriate Vandermonde matrix using the vander commmand, find the 5 -th degree polynomial interpolating the data. Find the condition number of the Vandermonde matrix. Plot it.
(b) Using lagrint function in NMM toolbox, find the coefficients of the 5-th degree polynomial using Lagrange basis. See if there is any difference with (a).
3. following data set between variables x and y :

x	0.4	0.75	1.3	2
y	4.95	10.14	15	17.6

(a) Using divDiffTable construct the divided difference table.
(b) Extract the coefficients of the Newton Polynomial

