NOT Due

1. Consider the 2×2 non-linear system given by

$$
\begin{array}{r}
x_{1}-x_{2}-3=0 \\
x_{1}^{2}-20 x_{1}-x_{2}+5=0
\end{array}
$$

(a) Identify $A(x), b(x)$ such that the above can be written as $A(x) x=b(x)$. Modify demoSSub to obtain a solution of the same. Use 10 iterations and find two initializing vectors that give you the two solutions.
(b) Identify f such that the above can be written as $f(x)=0$. Modify demoNewtonSys to obtain a solution of the same. Use 10 iterations and find two initializing vectors that give you the two solutions.
2. Consider the matrices

$$
W=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 10^{-6}
\end{array}\right], A=\left[\begin{array}{rrr}
0.1 & 0.1 & 10^{6} \\
0.2 & -0.1 & 10^{6} \\
0.1 & 0.2 & 0
\end{array}\right], b=\left[\begin{array}{r}
0.2+10^{6} \\
0.1+10^{6} \\
0.3
\end{array}\right]
$$

(a) Using OCTAVE and the ∞ norm, compute (exactly) $\kappa(A)$. Decide whether the matrix A is ill-conditioned or not.
(b) Using the \backslash operator in OCTAVE, solve $A x=b$.
(c) Perturb a_{13} to get another matrix $A+\delta A$ such that $\frac{\|\delta A\|}{\|A\|} \sim 10^{-6}$. Using the \backslash operator in OCTAVE, solve $(A+\delta A) \hat{x}=b$.
(d) Computer $\frac{\|x-\hat{x}\|}{\|x\|}$
(e) Let $\tilde{A}=A W$. Do parts (a) -(d) for \tilde{A}. Conclude that this matrix A was an "artificially" ill-conditioned matrix.

