Due: October 4th, Tuesday

Probems to be turned in are: 1,3,6

- 1. A function $f : \mathbb{R} \to \mathbb{R}$ is called upper-semicontinuous if $\forall x \in \mathbb{R}$ and $\forall \epsilon > 0, \exists \delta \equiv \delta(x, \epsilon) > 0$ such that $y \in (x \epsilon, x + \epsilon)$ implies $f(y) < f(x) + \epsilon$. Show that upper semi-continuous functions are measurable.
- 2. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let \mathcal{F} be a field generating \mathcal{A} . Show that if $f: \Omega \to \mathbb{R}$ is any \mathcal{A} measurable function, then for each $\epsilon > 0$, \exists a simple measurable function $g = \sum_{i=1}^{n} x_i \mathbb{1}_{F_i}$ with $F_i \in \mathcal{F}$ such that $\mu(\omega : | f - g | > \epsilon) < \epsilon$.
- 3. Let (Ω, \mathcal{B}) and (E, \mathcal{E}) be measurable spaces. Let $f : \Omega \to E$ be any function.
 - (a) Show that

$$\sigma(f) = \{ f^{-1}(B) : B \in \mathcal{E} \}$$

is a σ -algebra. This is usually referred to as the σ -algebra generated by f.

- (b) Show that if S is a collection of subsets of E such that $\sigma(S) = \mathcal{E}$ then show that $\sigma(f) = \sigma\{f^{-1}(S) : S \in S\}$.
- 4. Let $f: \Omega \to \mathbb{R}$ be any function and let $\mathcal{B} = \sigma(f)$. Show that a function $g: \Omega \to \mathbb{R}$ is \mathcal{B} measurable if and only if there is a borel function $h: \mathbb{R} \to \mathbb{R}$ such that $g = h \circ f$.
- 5. For each of the following functions, describe $\sigma(g)$
 - (a) $g : \mathbb{R} \to \mathbb{R}$ such that $g(x) = x^2$,
 - (b) $g: \mathbb{R} \to \mathbb{R}$ such that g(x) = x(mod(2))
 - (c) $g: \mathbb{R}^2 \to \mathbb{R}$ such that g(x, y) = |x y|.
 - (d) $g : \mathbb{R} \to \mathbb{R}$ such that g(x) = -3x.
- 6. Let f be a non-negative measurable function defined on the measure space $(\Omega, \mathcal{B}, \mu)$. Define

$$\mu_f : \mathcal{B} \to [0, \infty]$$
 by $\mu_f(E) = \int_E f d\mu.$

show that: (i) μ_f is a measure defined on B.

- (ii) μ_f is σ -finite if and only f is finite almost everywhere.
- (iii) $E \in \mathcal{B}, \mu(E) = 0 \Rightarrow \mu_f(E) = 0.$