1. Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain on state space S with transition matrix P and initial distribution μ. Let $i \in S, m, n \geq 0$ and

$$
Y_{m}=X_{n+m} \mid X_{n}=i
$$

Show that Y_{m} is a Markov chain on state space S with transition matrix P and initial distribution δ_{i}.
2. Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain on state space $S=\{1,2,3\}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

and initial distribution μ.

$$
p_{11}^{n}=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left(\frac{4}{5} \cos \left(\frac{n \pi}{2}\right)-\frac{2}{5} \sin \left(\frac{n \pi}{2}\right)\right)
$$

3. Let $0<p<1, n \geq 1$. Suppose now that Z_{0}, Z_{1}, \ldots are i.i.d Bernoulli (p). Let $S_{0}=0, S_{n}=Z_{1}+Z_{2}+\ldots+Z_{n}$. In each of the following cases determine whether $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain:
(a) $X_{n}=Z_{n}$,
(b) $X_{n}=S_{n}$,
(c) $X_{n}=S_{0}+S_{1}+\ldots S_{n}$.

In the cases where $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain find its state-space and transition matrix. In cases where it is not a Markov chain give an example where $P\left(X_{n+1}=i \mid X_{n}=j, X_{n-1}=k\right)$ is not independent of k.

[^0]
[^0]: ${ }^{1}$ Instructions: Please write up individual solutions for each of the problems and hand it over at 11:00am. Secondly, form 3 groups. Each group should write the solution of one of the problems on the board, Leon, please take the photographs of the solutions and emails it to me.

