1. Branching Chain Let X_{0} be a $\{0\} \cup \mathbb{N}$ valued random variable with distribution μ. For $n \geq 1$,

$$
X_{n}=\sum_{i=1}^{X_{n-1}} \xi_{i}^{(n)}
$$

where $\xi_{k}^{(n)}$ are i.i.d random variables with common distribution given by ξ, such that

$$
p_{k}=P(\xi=k), \text { for all } k \geq 0
$$

Assume $p_{0}+p_{1}<1$.
(a) Show that X_{n} is a Markov chain on $\{0\} \cup \mathbb{N}$ with initial distribution μ with transition matrix P given by

$$
p_{i j}=P\left(\sum_{k=1}^{i} \xi_{k}=j\right)
$$

where ξ_{k} are i.i.d ξ.
(b) Deduce that with probability 1 either $X_{n}=0$ for some $n \geq 1$ or $X_{n} \rightarrow \infty$ as $n \rightarrow \infty$
(c) Let $m=E[\xi]$. Show that $E\left[X_{n}\right]=m^{n}$ for all $n \geq 1$.
(d) Generating Function: Let $f(s)=\sum_{k=0}^{\infty} p_{k} s^{k}$ for $|s| \leq 1$.
i. Show that $\sum_{j=0}^{\infty} p_{i j} s^{j}=(f(s))^{i}$ for all $i \geq 1$ and $|s| \leq 1$
ii. Consider the iterates of f,

$$
f_{0}(s)=s, f_{1}(s)=f(s), f_{n+1}(s)=f\left(f_{n}(s)\right)
$$

Show that

$$
\sum_{j=0}^{\infty} p_{i j}^{n} s^{j}=\sum_{j=0}^{\infty} p_{i j}^{n-1}(f(s))^{j}=\left(f_{n}(s)\right)^{i}, \text { for all } i \geq 1
$$

(e) Smallest Root:

i. Show that f is strictly convex and increasing in $[0,1]$.
ii. If $m \leq 1$ then $f(t)>t$ for all $t \in[0,1)$.
iii. If $m>1$ then $f(t)=t$ has a unique root in $[0,1)$.
iv. Show that there is a $q \in[0,1]$ such that q is the smallest solution to $f(q)=q$. Further if $m \leq 1$ then $q=1$ and if $m>1$ then $q<1$.
(f) Show that if

$$
\begin{array}{ll}
t \in[0, q) & \text { then } f_{n}(t) \uparrow q \text { as } n \rightarrow \infty \\
t \in[q, 1) & \text { then } f_{n}(t) \downarrow q \text { as } n \rightarrow \infty \\
t=q & \text { then } f_{n}(t)=t \text { for all } n \geq 1
\end{array}
$$

(g) Extinction Probability

$$
P\left(X_{n}=0 \text { for some } n \geq 0\right)= \begin{cases}1 & \text { if } m \leq 1 \\ q & \text { if } m<1\end{cases}
$$

where $q<1$ is as in (e).
2. Wright-Fisher Model In each generation there are m alleles, some of type A and some of type a. The types of alleles in generation $n+1$ are found by choosing randomly (with replacement) from the types in n-th generation. If X_{n} denotes the number of alleles of type A in generation n, then X_{n} be a discrete time Markov chain on $\{0,1, \ldots, m\}$ with transition probability matrix P given by

$$
p_{i j}=\binom{m}{j}\left(\frac{i}{m}\right)^{j}\left(\frac{m-i}{m}\right)^{m-j} .
$$

(a) Find the communicating classes of X_{n}.
(b) Find $h(i)=P\left(X_{n}=m\right.$ for some $\left.n\right)$.
3. Moran Model Consider the birth-death chain on $\{0,1,2 \ldots m\}$ with transition probabilities given by

$$
p_{i, i-1}=\frac{i(m-i)}{m^{2}}, p_{i, i}=\frac{i^{2}+(m-i)^{2}}{m^{2}}, p_{i, i+1}=\frac{i(m-i)}{m^{2}}
$$

when $1<i<m$ and $p_{0,0}=p_{m, m}=1$.
(a) Can you give a genetic interpretation for this model as in WrightFisher model ?
(b) Find $k(i)=E_{i}[T]$ where $T=\inf \left\{k \geq 0: X_{k} \in\{0,1\}\right\}$

