1. Branching Chain Let X_0 be a $\{0\} \cup \mathbb{N}$ valued random variable with distribution μ . For $n \geq 1$,

$$X_n = \sum_{i=1}^{X_{n-1}} \xi_i^{(n)}$$

where $\xi_k^{(n)}$ are i.i.d random variables with common distribution given by ξ , such that

$$p_k = P(\xi = k)$$
, for all $k \ge 0$.

Assume $p_0 + p_1 < 1$.

(a) Show that X_n is a Markov chain on $\{0\} \cup \mathbb{N}$ with initial distribution μ with transition matrix P given by

$$p_{ij} = P(\sum_{k=1}^{i} \xi_k = j),$$

where ξ_k are i.i.d ξ .

- (b) Deduce that with probability 1 either $X_n=0$ for some $n\geq 1$ or $X_n\to\infty$ as $n\to\infty$
- (c) Let $m = E[\xi]$. Show that $E[X_n] = m^n$ for all $n \ge 1$.
- (d) Generating Function: Let $f(s) = \sum_{k=0}^{\infty} p_k s^k$ for $|s| \le 1$.
 - i. Show that $\sum_{j=0}^{\infty} p_{ij} s^j = (f(s))^i$ for all $i \ge 1$ and $|s| \le 1$ ii. Consider the iterates of f,

$$f_0(s) = s, f_1(s) = f(s), f_{n+1}(s) = f(f_n(s)).$$

Show that

$$\sum_{j=0}^{\infty} p_{ij}^n s^j = \sum_{j=0}^{\infty} p_{ij}^{n-1} (f(s))^j = (f_n(s))^i, \text{ for all } i \ge 1.$$

(e) Smallest Root:

- i. Show that f is strictly convex and increasing in [0, 1].
- ii. If $m \leq 1$ then f(t) > t for all $t \in [0, 1)$.
- iii. If m > 1 then f(t) = t has a unique root in [0, 1).
- iv. Show that there is a $q \in [0, 1]$ such that q is the smallest solution to f(q) = q. Further if $m \leq 1$ then q = 1 and if m > 1 then q < 1.

(f) Show that if

$$\begin{array}{ll} t \in [0,q) & \text{then } f_n(t) \uparrow q \text{ as } n \to \infty \\ t \in [q,1) & \text{then } f_n(t) \downarrow q \text{ as } n \to \infty \\ t = q & \text{then } f_n(t) = t \text{ for all } n \ge 1. \end{array}$$

(g) Extinction Probability

$$P(X_n = 0 \text{ for some } n \ge 0) = \begin{cases} 1 & \text{if } m \le 1 \\ q & \text{if } m < 1, \end{cases}$$

where q < 1 is as in (e).

2. Wright-Fisher Model In each generation there are m alleles, some of type A and some of type a. The types of alleles in generation n + 1 are found by choosing randomly (with replacement) from the types in n-th generation. If X_n denotes the number of alleles of type A in generation n, then X_n be a discrete time Markov chain on $\{0, 1, \ldots, m\}$ with transition probability matrix P given by

$$p_{ij} = \binom{m}{j} \left(\frac{i}{m}\right)^j \left(\frac{m-i}{m}\right)^{m-j}.$$

- (a) Find the communicating classes of X_n .
- (b) Find $h(i) = P(X_n = m \text{ for some } n)$.
- 3. Moran Model Consider the birth-death chain on $\{0, 1, 2...m\}$ with transition probabilities given by

$$p_{i,i-1} = \frac{i(m-i)}{m^2}, \ p_{i,i} = \frac{i^2 + (m-i)^2}{m^2}, \ p_{i,i+1} = \frac{i(m-i)}{m^2},$$

when 1 < i < m and $p_{0,0} = p_{m,m} = 1$.

- (a) Can you give a genetic interpretation for this model as in Wright-Fisher model ?
- (b) Find $k(i) = E_i[T]$ where $T = \inf\{k \ge 0 : X_k \in \{0, 1\}\}$