1. Let $X_{n}{ }^{1}$ be a Markov chain on state space S with transition matrix P. The period of $i \in S$ is defined as

$$
\begin{equation*}
d(i)=g . c . d .\left\{m \geq 1: p_{i i}^{m}>0\right\} \tag{1}
\end{equation*}
$$

If $p_{i i}^{m}=0$ for all $m \geq 1$, then $d(i)$ is defined to be 0 . Let $i \in S$, then show that $d(i)=1$ if and only if there is an n_{0} such that $p_{i i}^{n}>0$ for all $n \geq n_{0}$.
2. Suppose Pyare Lal and Lajo have two rupees each. They decide to play a game according to the following rules. At each turn a coin will be tossed, if it turns up heads then Pyare Lal will give Lajo one rupee. If it turns up tails then Lajo will give Pyare Lal one rupee. The game ends if any one player runs out of money. Let X_{n} be the wealth of, say, Lajo at time n. Then X_{n} is a Markov chain on state space $S=\{0,1,2,3,4\}$ with $X_{0}=2$ and transition matrix

$$
=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Show that $F=\inf \left\{n \geq 1: X_{n} \in\{0,4\}\right\}$ is a stopping time. Can you find the distribution of X_{F} ?
3. Let X_{n} be the simple symmetric walk on with $X_{0}=0$. Let $a>0$. Let

$$
T_{a}=\inf \left\{n \geq 1: X_{n}=a\right\}
$$

(a) Show that T_{a} is a stopping time and the 'inf' in T_{a} is actually a minimum with probability one.
(b) (Reflection Principle) Suppose $M_{n}=\max _{0 \leq i \leq n} X_{i}$. Show that

$$
P\left(M_{n} \geq a, X_{n}<a\right)=P\left(M_{n} \geq a, X_{n}>a\right)
$$

(Hint: Apply the strong markov property at T_{a} and symmetry of the distribution of the Bernoulli trials.)

[^0]4. Let X_{n} be a Markov chain on state space $S=\{0,1,2, \ldots, N\}$ with initial distribution μ and transition matrix given by:
\[

p_{i j}= $$
\begin{cases}1 & \text { if } i=0, j=0 \text { or } i=N, j=N \\ \frac{1}{2} & \text { if } i=j+1,1 \leq i \leq N-1 \\ \frac{1}{2} & \text { if } i=j-1,1 \leq i \leq N-1 \\ 0 & \text { otherwise. }\end{cases}
$$
\]

(a) For $i \in S$, let $D=\min \left\{n \geq 0: X_{n} \in\{0, N\}\right\}$. Find $f: S \rightarrow \mathbb{R}$ where $f(i)=E_{i}(D)$
(b) Let $g: S \rightarrow \mathbb{R}$ be defined as $g(i)=P_{i}\left(T_{N}<T_{0}\right)$. Find g.
5. Let X_{n} be a Markov Chain on state space S with transition matrix P. Let $i \in S$. Let

$$
T_{i}^{(0)}=0, \text { and } T_{i}^{(r)}=\inf \left\{k>T_{i}^{(r-1)} \mid X_{k}=i\right\}
$$

Show that
(a) $T_{i}^{(r)}$ are stopping times.
(b) $\left\{S^{\left.(r)_{i}\right\}_{r \geq 1}}\right.$ are independent.
(c) $\mathbb{P}\left(S_{i}^{(r)}=n \mid T_{i}^{(r-1)}<\infty\right)=\mathbb{P}_{i}\left(T_{i}=n\right)$

[^0]: ${ }^{1} d(i)$ is said to be the period of i and X_{n} is said to be aperiodic if $d(i)=1$ for all $i \in S$.

