- 1. Let X_n be a Markov Chain on $S = \{1, 2\}$ with transition matrix P. Find $\mathbb{P}_1(T^{\{1\}} = n)$ and $\mathbb{P}_1(T^{\{2\}} = n)$
- 2. Let X_n be the Ehrenfest chain, i.e X_n is a Markov Chain on $\{0, 1, \ldots d\}$, with transition matrix P given by

$$p_{ij} = \begin{array}{cc} \frac{i}{d} & \text{if } j = i - 1\\ 1 - \frac{i}{d} & \text{if } j = i + 1\\ 0 & \text{otherwise} \end{array}$$

- (a) Suppose that $X_0 \sim \text{Binomial } (d, \frac{1}{2})$, find the distribution of X_1 .
- (b) Show that the transition matrix P satisfies,

$$\sum_{i=0}^{d} ip_{ki} = Ak + B_i$$

for all $k \in \{0, 1, 2, \dots, d\}$, for some constants A, B.

- (c) Show that $\mathbb{E}(X_{n+1}) = A\mathbb{E}(X_n) + B$.
- (d) Find $\mathbb{E}_i(X_n)$ for any $i \in S$.
- 3. Let \mathbb{T}^2 be the rooted binary tree. That is, it is an infinite graph with ρ as the distinguished vertex, which comes with a single edge; at every other vertex there are three edges; and there are no closed loops. Place natural weights μ , on the edges. Show that the random walk on \mathbb{T}^2 , μ is transient.
- 4. Let \mathbb{Z}^2 be the integer lattice. Place natural weights μ , on the edges. Show that the random walk on \mathbb{Z}^2 , μ is recurrent.