1. Let X_{n} be a Markov Chain on $S=\{1,2\}$ with transition matrix P. Find $\mathbb{P}_{1}\left(T^{\{1\}}=n\right)$ and $\mathbb{P}_{1}\left(T^{\{2\}}=n\right)$
2. Let X_{n} be the Ehrenfest chain, i.e X_{n} is a Markov Chain on $\{0,1, \ldots d\}$, with transition matrix P given by

$$
p_{i j}=\begin{array}{ll}
\frac{i}{d} & \text { if } j=i-1 \\
1-\frac{i}{d} & \text { if } j=i+1 \\
0 & \text { otherwise }
\end{array}
$$

(a) Suppose that $X_{0} \sim \operatorname{Binomial}\left(d, \frac{1}{2}\right)$, find the distribution of X_{1}.
(b) Show that the transition matrix P satisfies,

$$
\sum_{i=0}^{d} i p_{k i}=A k+B
$$

for all $k \in\{0,1,2, \ldots, d\}$, for some constants A, B.
(c) Show that $\mathbb{E}\left(X_{n+1}\right)=A \mathbb{E}\left(X_{n}\right)+B$.
(d) Find $\mathbb{E}_{i}\left(X_{n}\right)$ for any $i \in S$.
3. Let \mathbb{T}^{2} be the rooted binary tree. That is, it is an infinite graph with ρ as the distinguished vertex, which comes with a single edge; at every other vertex there are three edges; and there are no closed loops. Place natural weights μ, on the edges. Show that the random walk on \mathbb{T}^{2}, μ is transient.
4. Let \mathbb{Z}^{2} be the integer lattice. Place natural weights μ, on the edges. Show that the random walk on \mathbb{Z}^{2}, μ is recurrent.

