1. Let $X_{n}$ be a Markov chain on state space $S=\{1,2,3,4,5,6,7\}$ with transition matrix

$$
P=\left(\begin{array}{ccccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right) .
$$

(a) Sketch the graph induced by this Markov chain on the vertex set $S$.
(b) Determine the closed communicating classes and their periodicity.
2. (Random walk on a Circle) Let $0<p<1, S$ be $\{0,1,2, \ldots, L\}$, $\mu: S \times S \rightarrow[0,1]$, given by

$$
\mu_{i, j}= \begin{cases}p & \text { if } j=i+1, i \neq L, \text { or } j=0, i=L \\ 1-p & \text { if } j=i-1, i \neq 0, \text { or } j=L, i=0 \\ 0 & \text { otherwise }\end{cases}
$$

and $E=\left\{\{i, j\}: \mu_{i, j}>0\right\}$. Consider the Markov chain $\left\{X_{n}\right\}$, as the random walk on the weighted graph $(S, E, \mu)$.
(a) Write down the transition probability matrix, when $L=6$.
(b) Sketch the graph induced by this Markov chain on the vertex set $S$.
(c) For general $L$, show that the chain is irreducible.
3. Consider the Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ on $S=\{0,1,2,3,4,5,6\}$ with the
following transition matrix:

$$
P=\left(\begin{array}{ccccccc}
0 & \frac{3}{5} & 0 & 0 & \frac{1}{5} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

For any subset $A \subset[0,1]$. let $h^{A}: S \rightarrow[0,1]$ be given by $h^{A}(i)=$ $\mathbb{P}_{i}\left(T^{A}<\infty\right)$
(a) Compute $h^{A}$ when $A=\{6\}$
(b) Compute $h^{A}$ when $A=\{3\}$
4. (Gambler's Ruin Chain) Let $S$ be $\{0,1,2, \ldots, L\}$, the transition matrix $P=\left[p_{i j}\right]$ be given by

$$
p_{i j}= \begin{cases}1 & \text { if } j=0, i=0, \text { and } j=L, i=L \\ p & \text { if } j=i+1, i \neq L \\ 1-p & \text { if } j=i-1, i \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Compute $h: S \rightarrow[0,1]$ given by $h(i)=\mathbb{P}_{i}\left(T^{\{0\}}<T^{\{L\}}\right)$.

