Due: Tuesday, October 7th 2003

1. (Ferguson page 124)Find the likelihood equations and the assymptotic distribution of the MLE for the parameters of the gamma distribution $\mathcal{G}(\alpha, \beta)$,

$$f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} \exp(-\frac{x}{\beta}) I(x > 0),$$

$$\Theta = \{(\alpha, \beta) : \alpha > 0, \beta > 0\}$$

[You can leave your solutions in terms of $\frac{d}{d\alpha}\log\Gamma(\alpha)$ and $\frac{d}{d\alpha}\Gamma(\alpha)$]

2. (Ferguson page 124) Find the likelihood equations and the assymptotic distribution of the MLE for the parameters of

$$f(x \mid \theta_1, \theta_2) = \exp(-\theta_2 \cosh(x - \theta_1) - \zeta(\theta_2)),$$

where the parameter space is $\Theta = \{(\theta_1, \theta_2) : \theta_2 > 0, \}$ and where $\zeta(\theta_2) = \log \int_{-\infty}^{\infty} exp(-\theta_2 cosh(x)) dx$.

- 3. (Lehmann page 564) Determine the rejection region of the Wald, Rao, and likelihood ratio tests of the following hypotheses against two-sided alternatives:
 - (a) $H_0: \lambda = \lambda_0$ when the X are i.i.d. with Poisson distribution $P(\lambda)$.
 - (b) $H_0: p=p_0$ when the X are independent with $P(X_i=1)=p, P(X_i=0)=1-p$
 - (c) $H_0: \sigma^2 = \sigma_0^2$ when the X are i.i.d. $N(0, \sigma^2)$.
- 4. Let X_1, X_2, \ldots be i.i.d N(0,1). Suppose that only values $\theta \geq 0$ are possible and that we wish to test $H_0: \theta = 0$ against $\theta > 0$. Then calculate the MLE $\hat{\theta}_n$. Discuss the convergence of $\sqrt{n}(\hat{\theta}_n \theta)$.
- 5. Let $X_1, \ldots X_n$ be i.i.d. according to the distribution with density function

$$f_{\theta}(x) = \theta \frac{c^{\theta}}{x^{\theta+1}}, 0 < c < x, 0 < \theta.$$

- (a) Determine the unique solution $\hat{\theta}_n$ of the likelihood equation and find the limit distribution of $\sqrt{n}(\hat{\theta}_n \theta)$.
- (b) Determine the Wald, Rao and likelihood ratio tests of $H_0: \theta = \theta_0$ against $\theta \neq \theta_0$
- 6. Suppose $T_n \to \sigma^2$ and X_n is $AN(0, \sigma^2)$, show that $\frac{X_n}{T} \stackrel{d}{\longrightarrow} N(0, 1)$
- 7. Assume (C1)-(C7). Let $\hat{\theta}_n$ be a consistent root of the likelihood equation, the null distribution of $2\Delta_n = 2(l_n(\hat{\theta}_n) l_n(\theta_0))$ tends to a χ^2 with one degree of freedom.
- 8. Fill in all the details in Example 7.7.1-5 in Lehmann.
- 9. Read Theorem 7.7.4 and apply it to Example 7.7.6 in Lehmann.

Problems to be turned in are: 1,2,4,5,6