Due: Thursday, September 11th 2003

- 1. Let X_1, X_2, \ldots, X_n be i.i.d. Cauchy with p.d.f $\frac{a}{\pi} \frac{1}{x^2 + a^2}, -\infty < x < \infty, a > 0$. Show that
 - (a) the likelihood equation has a unique solution \hat{a}_n .
 - (b) the solution \hat{a}_n corresponds to a local maximum of $l_n(a)$
 - (c) \hat{a}_n is the MLE.
- 2. Let X_1, \ldots, X_n be i.i.d. according to the normal distribution $N(\mu, \sigma^2)$. Assume $\mu = a\sigma, 0 < \sigma < \infty$.
 - (a) Write down the log-likelihood function for σ and then proceed to derive the likelihood equation.
 - (b) Obtain the MLE for σ .
 - (c) Compute $I(\sigma)$.
 - (d) Describe the assymptotic distribution of $\hat{\sigma}_n$. [You may assume (C6) and (C7) stated in class are satisfied]
 - (e) Observe that $\frac{\bar{X}_n}{a}$ and $\sqrt{\frac{\sum_{i=1}^n (X_i \bar{X}_n)^2}{n-1}}$ are also estimates of σ and compute their assymptotic distributions.
 - (f) Compare the relative efficiency of the above estimates.
- 3. Let X_1, \ldots, X_n be i.i.d. according to the uniform distribution $U(0, \theta)$.
 - (a) Calculate the MLE for θ .
 - (b) Show that $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\longrightarrow} 0$
 - (c) Compute $I(\theta)$
 - (d) Conclude that all of (C1) C(5) cannot hold for this example. Identify at least one of them.
- 4. Let X_1, X_2, \ldots, X_n be i.i.d according to a Cauchy distribution with density $f_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)}$.
 - (a) Find a consistent estimator for θ .
 - (b) Calculate δ_n (discussed in class).
 - (c) Compute the assymptotic relative efficiency between the above two.
- 5. Suppose we have a sample of size d from each of n normal populations with commmon unknown variance but possibly different unknown means.

$$X_{ij} \stackrel{d}{=} N(\mu_i, \sigma^2), i = 1, \dots n, \quad j = 1, \dots d.$$

where all the X_{ij} are independent.

- (a) Find the MLE of σ^2 .
- (b) Show that for d fixed, $\hat{\sigma}_n^2$ is not consistent for σ^2 .

Problems to be turned in are: 2,5